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Abstract: SELF’s debugging system provides complete
source-level debugging (expected behavior) with globally
optimized code. It shields the debugger from optimizations
performed by the compiler by dynamically deoptimizing
code on demand. Deoptimization only affects the procedure
activations that are actively being debugged; all other code
runs at full speed. Deoptimization requires the compiler to
supply debugging information at discrete interrupt points;
the compiler can still perform extensive optimizations
between interrupt points without affecting debuggability. At
the same time, the inability to interrupt between interrupt
points is invisible to the user. Our debugging system also
handles programming changes during debugging. Again,
the system provides expected behavior: it is possible to
change a running program and immediately observe the
effects of the change. Dynamic deoptimization transforms
old compiled code (which may contain inlined copies of the
old version of the changed procedure) into new versions
reflecting the current source-level state. To the best of our
knowledge, SELF is the first practical system providing full
expected behavior with globally optimized code.

1. Introduction

SELF is a pure object-oriented language designed for rapid
prototyping, increasing programmer productivity by maxi-
mizing expressiveness and malleability [US87]. SELF’s
pure message-based model of computation requires exten-
sive optimization to achieve good performance [CU91,
HCU91]. Without aggressive procedure integration
(inlining), for example, performance would be abysmal
[Cha92]. But an interactive programming environment also
demands rapid turnaround time and complete source-level
debugging. To make SELF practical, the system must
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provide interpreter semantics at compiled-code speed,
combining expected behavior [Zel84] with global optimiza-
tion.

Most existing systems do not support the debugging of opti-
mized code. Programs can either be optimized for full
speed, or they can be compiled without optimizations for
full source-level debugging. Recently, techniques have been
developed that strive to make it possible to debug optimized
code [Hen82, Zel84, CMRS88]. However, none of these
systems is able to provide full source-level debugging. For
example, it generally is not possible to obtain the values of
all source-level variables, to single-step through the
program, or to change the value of a variable. Optimization
is given priority over debugging, and consequently these
systems provide only restricted forms of debugging.

To the best of our knowledge, SELF is the first practical
system providing full expected behavior with globally opti-
mized code. Compared to previous techniques, our use of
dynamic deoptimization and interrupt points permits us to
place fewer restrictions on the kind of optimizations that can
be performed while still preserving expected behavior.

The remainder of this paper is organized as follows. Section
2 discusses the optimizations performed by the SELF
compiler and how they affect debugging. Section 3
describes how optimized code can be deoptimized, and
section 4 explains how running programs can be changed.
Section 5 discusses the implementation of common debug-
ging operations. Section 6 discusses the benefits and limita-
tions of our approach, and section 7 examines its run-time
and space cost. Section 8 relates this paper to previous
work, and section 9 contains our conclusions.

2. Optimization and debugging

This section briefly outlines the optimizations that the SELF
compiler performs and discusses some of the problems they
cause for the debugger.
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2.1 Optimizations performed by the SELF
compiler

SELF uses dynamic compilation [DS84, CUL89]: instead of
compiling whole programs prior to execution, code is
generated incrementally at run-time and kept in a cache.
Whenever a source method is invoked which hasn’t already
been compiled, a new compiled method is created and
cached. (In the SELF system, source code is accessible at all
times so that methods can be (re-)compiled at any time.)

In addition to standard optimizations such as global constant
propagation, constant folding, and global register allocation,
our compiler relies extensively on three optimizations
which are important for pure object-oriented languages:
inlining, customization, and splitting [CUL89, CU90,
CUO91]. Inlining reduces the call overhead and enables opti-
mizations which span source method boundaries. Customi-
zation creates multiple compiled copies of source methods,
each copy specialized for a particular receiver type.
Customization allows many dynamically-dispatched calls to
be statically bound and subsequently inlined. Splitting
creates multiple compiled copies of a source-level expres-
sion and optimizes each copy for a particular set of types.

Additionally, the compiler performs dead code elimination,
strength reduction, and global common subexpression elim-
ination of arithmetic expressions, loads, and stores. Redun-
dant computations are eliminated only if they cannot cause
observable side effects such as arithmetic overflow. The
compiler sometimes unrolls loops to avoid repeating type
tests in every iteration of the loop, which frequently has the
effect of hoisting invariant code out of loops. Low-level
optimizations such as delay slot filling are also performed;
more extensive instruction scheduling could easily be
supported but has not been implemented. Induction variable
elimination could be supported by extending the structure of
our debugging information.

Since it must always provide full source-level debugging,
the SELF compiler does not perform certain optimizations.
In general, dead stores cannot be eliminated, and the regis-
ters of dead variables cannot be reused without spilling the
variable to memory first. Both optimizations can be
performed, however, if there is no interrupt point within the
variable’s scope (see section 3.4). Finally, the SELF
compiler does not perform tail recursion elimination or tail
call elimination because they cannot be supported transpar-
ently: in general, it is not possible to reconstruct the stack
frames eliminated by these optimizations. Instead, iteration
is supported through a primitive which restarts execution of
the current scope. (The SELF language does not pre-define
common control structures such as if and while; such
control structures are user-defined).

2.2 Problems caused by optimization

The code transformations performed by global optimization
make it hard to debug optimized code at the source level.
Because optimizations delete, change, or rearrange parts of
the original program, they become visible to the user who
tries to debug the optimized program. This sections presents
some of the problems that must be solved to provide source-
level debugging of optimized code.

2.2.1 Displaying the stack

Optimizations such as inlining, register allocation, constant
propagation, and copy propagation create methods whose
activation records have no direct correspondence to the
source-level activations. For example, a single physical
stack frame may contain several source-level activations
because message sends have been inlined. Variables may be
in different locations at different times, and some variables
may not have run-time locations at all.

physical stack source-level stack
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Figure 1. Displaying the stack

The example in Figure 1 shows the effects of inlining. The
physical stack contains three activations A’, C’, and F’. In
contrast, the source-level-stack contains additional activa-
tions which were inlined by the compiler. For example, the
activation B was inlined into A’, and so B does not appear in
the physical stack trace.

2.2.2 Single-stepping

To single-step, the debugger has to find and execute the
machine instructions belonging to the next source operation.
Optimizations such as code motion or instruction sched-
uling make this a hard problem: the instructions for one
statement may be interspersed with those of neighboring
statements, and statements may have been reordered to
execute out of source-level order. In contrast, single-step-
ping is simple with unoptimized code since the code for a
statement is contiguous.

2.2.3 Changing the value of a variable
Consider the following code fragment:
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Since the expression 1 + j is a compile-time constant, the
compiler has eliminated its computation from the generated
code. But what if the program is suspended just before the
assignment to k and the programmer changes j to be 10?
Execution of the optimized code cannot be resumed since it
would produce an unexpected value for k. With unopti-
mized code, of course, there would be no problem since the
addition would still be performed by the compiled code.

2.2.4 Changing a procedure

A similar problem arises when an inlined procedure is
changed during debugging. Suppose that the program is
suspended just before executing the inlined copy of function
f when the programmer changes £ because she has found a
bug. Obviously, execution cannot simply continue since £’s
old definition is hard-wired into its caller. On the other
hand, it would be easy to provide expected behavior with
unoptimized code: £’s definition could simply be replaced,
and the subsequent call to £ would execute the correct code.

3.

None of the above problems would exist with unoptimized
code. If optimized code could be converted to unoptimized
code on demand, programs could be debugged easily while
still running at full speed most of the time. SELF’s debug-
ging system is based on such a transformation. Compiled
code exists in one of two states:

Deoptimization

e Optimized code, which can be suspended only at
relatively widely-spaced interrupt points; at every
interrupt point, the source-level state can be
reconstructed, and

e Unoptimized code, which can be suspended at any
arbitrary source-level operation and thus supports all
debugging operations (such as single-stepping).

Section 3.1 explains the data structures used to recover the
source-level state from the optimized program state.

Sections 3.2 and 3.3 describe how optimized code can be
transformed into unoptimized code on demand, and section
3.4 discusses how interrupt points lessen the impact of
debugging on optimization.

3.1 Recovering the unoptimized state

To display a source-level stack trace and to perform deopti-
mization, the system needs to reconstruct the source-level
state from the optimized machine-level state. To support
this reconstruction, the SELF compiler generates scope
descriptors [CUL89] for each scope contained in a
compiled method, i.e., for the initial source method and all
methods inlined within it. A scope descriptor specifies the
scope’s place in the virtual call tree of the physical stack
frame and records the locations or values of its arguments
and locals (see Figure 2). The compiler also describes the
location or value of each subexpression within the compiled
method. This information is needed to reconstruct the stack
of evaluated expressions that are waiting to be consumed by
later message sends.

To find the correct scope for a given physical program
counter, the debugger needs to know the virtual program
counter (source position), i.e., the pair of a scope descrip-
tion and a source position within that scope. Therefore, the
debugging information generated with each compiled
method also includes a mapping between physical and
virtual program counters.

With the help of this information, the debugger can hide the
effects of inlining, splitting, register allocation, constant
propagation, and constant folding from the user. For
example, if the compiler eliminates a variable because its
value is a compile-time constant, the variable’s descriptor
would contain that constant. A straightforward extension of
the descriptor structure could be used to handle variables
whose values can be computed from other values (such as
eliminated induction variables).

struct ScopeDesc {
oop method;
ScopeDesc* caller;
int posWithinCaller;
ScopeDesc* enclosingScope;
NameDesc args|[];
NameDesc locals[];
NameDesc expressionStack[];

}i

struct NameDesc {
enum { const, loc } tag;
union {
oop value;
Location location;
}i
}i

// pointer to the method object

/I scope into which this scope was inlined (if any)
// source position within caller

// lexically enclosing scope (if any)

/I descriptors for receiver and arguments

// descriptors for locals

/1 descriptors for all subexpressions

/I compile-time constant or run-time value

// constant value
// run-time location

Figure 2. Pseudo-code declarations for scope data structures
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Figure 3. Recovering the source-level state

Figure 3 shows a method suspended at two different times.
When the method is suspended at time t, the physical PC is
28 and the corresponding source position is line 5 of method
B. A stack trace would therefore display B being called by
A, hiding the fact that B has been inlined into A by the
compiler. Similarly, at time t, the source-level view would
show D being called by C being called by A, displaying
three virtual stack frames instead of the single physical
stack frame. To display a complete stack trace, this process
is simply repeated for each physical stack frame

3.2 The transformation function

Our approach transforms an optimized method into one or
more equivalent unoptimized methods. For the moment, we
assume that only the topmost stack activation needs to be
transformed so that stack frames can easily be removed or
added; section 3.3 explains how to remove this restriction.
The deoptimizing transformation can then be performed as
follows:

1. Save the contents of the physical activation (stack
frame) which is to be transformed, and remove it from
the run-time stack.

2. Using the mechanisms described in the previous section,
determine the source-level (virtual) activations con-
tained in the physical activation, the values of their lo-
cals, and their virtual PC.

3. For each virtual activation, create a new compiled meth-
od and a corresponding physical activation. To simplify
the transformation function and subsequent debugging
activities, the new methods (the rarget methods) are
completely unoptimized: every message send corre-
sponds to a call, and no optimizations such as constant
folding or common subexpression elimination are per-
formed.

4. For each virtual activation, find the new physical PC in

the corresponding compiled method. Since the target
method is unoptimized, there will be exactly one physi-
cal PC for the given virtual PC. (This would not neces-
sarily be the case if the target methods were optimized.)
Initialize the stack frames created in the previous step by
filling in the return PC and other fields needed by the
run-time system, such as the frame pointer.
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Figure 4. Transforming an optimized stack frame into unoptimized form

5. For each virtual activation, copy the values of all param-
eters, locals, and expression stack entries from the opti-
mized to the unoptimized activation. Since the
unoptimized method is a straightforward one-to-one
translation of the source method, all variables will be
mapped to locations in the target activation, and thus all
copied values will have an unambiguous destination.
(This would not necessarily be the case if the target
methods were optimized.) Furthermore, since the target
method is unoptimized, it does not contain any hidden
state which would need to be initialized (such as the
value of a common subexpression). Thus, together with
step 4, we have completely initialized the new stack
frames for all virtual activations, and the transformation
is complete.

Figure 4 illustrates the process. The transformation expands
an optimized stack frame containing three virtual activa-
tions into a sequence of three unoptimized stack frames,
thus creating a one-to-one correspondence between virtual
and physical frames.

Only those parts of the program which are actively being
debugged (e.g., by stepping through them) need to be trans-
formed. These parts will be the only parts of the program
running unoptimized code; all other parts can run at full
speed. No transformations are necessary just to inspect the
program state, as described in section 3.1.

3.3 Lazy deoptimization

But how can a stack frame be deoptimized when it is in the
middle of the stack, where new stack frames cannot be

inserted easily? To solve this problem, our current imple-
mentation always transforms stack frames lazily: deoptimi-
zation is deferred until control is about to return into the
frame (see Figure 5). For example, if the virtual activation
vf> to be deoptimized is inlined in frame f in the middle of
the stack, f is not immediately deoptimized. Instead, the
return address of g (the stack frame called by f) is changed
to point to a routine which will transform f when g returns.
At that point, f is the topmost frame and is deoptimized.
Transforming only the most recent activation simplifies the
transformation process because no other stack frames need
to be adjusted even if deoptimization causes the stack
frames to grow in size.

Lazy deoptimization can simplify a system considerably,
but it may also restrict the debugging functionality. Our
system currently does not allow the contents of local vari-
ables to be changed during debugging because a variable
might not have a run-time location. In order to create a run-
time location for the variable, it might be necessary to trans-
form an activation in the middle of the stack, which our
system currently cannot do. However, this is not a funda-
mental problem; for example, the transformed stack frames
could be heap-allocated as described in [DS84]. An even
simpler solution would be to always allocate stack locations
for eliminated variables. These locations would be unused
during normal program execution but would spring into life
when the programmer manually changes the value of an
eliminated variable. Since the compiled code depended on
the old (supposedly constant) value, it would be invalidated
as if the programmer had changed the method’s source code
(see section 4).

5

g returns deoptimization

g —_— —_—
IS
g

1%
5 1vf real stack frame f (includes vir- Vf’vf vf, } tual activati
© 2 tual activations vf;, vf,, and vis) 2 every virnual activation
<£ 773 vfg that was contained in f
o — vip } now has its own real
o)
X real stack frame g vf3 } stack frame
g
(]

Figure 5. Lazy deoptimization of stack frames



3.4 Interrupt points

If optimized programs could be interrupted at any instruc-
tion boundary, debugging optimized code would be hard,
since the source-level state would have to be recoverable at
every single point in the program. To ease the restrictions
that this would impose on optimization, an optimized SELF
program can be interrupted only at certain interrupt points?
where its state is guaranteed to be consistent. Notification of
any asynchronous event occurring between two interrupt
points is delayed until the next interrupt point is reached.
Currently, the SELF system defines two kinds of interrupt
points: method prologues (including some process control
primitives) and the end of loop bodies (“backward
branches”). This definition implies that the maximum inter-
rupt latency is bounded by the length of the longest code
sequence containing neither a call nor a loop end, typically
only a few dozen instructions. Because the latency is so
short, the use of interrupt points is not noticed by the
programmer. (If only sends were interrupt points, loops
without calls could not be interrupted.)

Interrupt points need to cover all possible points where a
program could be suspended; that is, they also need to
handle synchronous events such as arithmetic overflow. In
our system, all possible run-time errors are interrupt points
because all SELF primitives are safe: if the requested opera-
tion cannot be performed, the primitive calls a user-defined
error handler which usually invokes the debugger.

Once an optimized program is suspended, the current acti-
vation can be deoptimized if necessary to carry out debug-
ging requests. In an unoptimized method, every source point
is an interrupt point, and the program can therefore stop at
any point.

Since the debugger can be invoked only at interrupt points,
debugging information need be generated only for those
points. This reduces the space used by the debugging infor-
mation, but more importantly it allows extensive optimiza-
tions between interrupt points. Essentially, the compiler
may perform any optimization whose effects either do not
reach an interrupt point or can be undone at that point. For
example, the compiler can reuse a dead variable’s register as
long as there are no subsequent interrupt points within the
variable’s scope. The more widely-spaced interrupt points
are, the fewer restrictions source-level debugging imposes
on optimization.

Interrupt points also lessen the impact of garbage collection
on compiler optimization. Garbage collections can only
occur at interrupt points, and so the compiler can generate

T Interrupt points have been used in other systems before; see section 8 for
a discussion of the Deutsch-Schiffman Smalltalk-80 system.

code between interrupt points that temporarily violates the
invariants needed by the garbage collector [Cha87].

4. Updating active methods

During debugging, a programmer might not only change the
value of a variable but also the definition of a method. To
invalidate the compiled code affected by such a change, the
SELF system maintains dependency links between compiled
code and the objects representing source code methods
[CUL89]. For example, if a compiled method contains
inlined copies of a method that was changed, the compiled
method is discarded.

However, if a compiled method containing an inlined copy
of a changed method is active (i.e., has at least one activa-
tion), it cannot simply be discarded. Instead, the compiled
method must be replaced by a new compiled method before
execution can continue. Fortunately, deoptimization can be
used for this purpose. After the active compiled method has
been deoptimized, it will no longer contain any inlined
methods. When its execution continues, all subsequent calls
to the changed method will correctly invoke the new defini-
tion.

If the changed method itself is currently active, updating its
activation is hard. Fortunately, in SELF we don’t have to
solve this problem because in SELF’s language model, acti-
vations are created by cloning the method object. Once
created, the clone is independent from its original, so
changes to the original do not affect the clone.

Lazy transformation elegantly solves the problem of invali-
dated compiled methods in the middle of the stack: we
simply wait until the invalid method is on top of the stack,
then transform it. Lazy transformation is very desirable in
an interactive system since it spreads out the repair effort
over time, avoiding distracting pauses. Furthermore, it
handles sequences of changes well, for example when
reading in a file containing new definitions for a group of
related objects. With eager transformation, every new defi-
nition would cause all affected compiled methods to be
recompiled, and many methods would be recompiled
several times since they are likely to be affected by several
of the changes. With lazy transformation, these compiled
methods will be invalidated repeatedly (which is no
problem since invalidation is very cheap) but only trans-
formed once.

In conclusion, with our debugging mechanisms it is almost
trivial to support changing running programs. Our current
implementation consists of less than a hundred lines of C++
code on top of the previously described debugging function-
ality and the code maintaining the dependencies.



5. Common debugging operations

This section describes the debugging operations imple-
mented in the SELF system and outlines possible implemen-
tations of additional operations. With deoptimization, it is
relatively easy to implement common debugging operations
such as single-step and finish because these operations are
simple to perform in unoptimized code, and deoptimization
can supply unoptimized code for every program piece on
demand. In contrast, neither single-step nor finish could
generally be provided by previous systems for debugging
optimized code [Zel84, CMRS88].

5.1 Single-step

Because every source point has an interrupt point associated
with it in a deoptimized method, the implementation of
single-stepping becomes trivial. The system deoptimizes the
current activation and restarts the process with the interrupt
flag already set. The process will relinquish control upon
reaching the next interrupt point, i.e. after executing a single
step.

5.2 Finish

The finish operation continues program execution until the
selected activation returns. It is implemented by changing
the return address of the selected activation’s stack frame to
a special routine that will suspend execution when the acti-
vation returns. Thus, the program is not slowed down during
the finish operation because it can run optimized code.

If the selected activation does not have its own physical
stack frame (because it was inlined into another method), its
stack frame is deoptimized using lazy deoptimization. In
this case, the program can still run optimized code most of
the time; only at the very end (when lazy deoptimization is
performed) does it run unoptimized code.

5.3 Next

The next operation (also called “step over”) executes the
next source operation without stepping into calls. That is,
the program will stop after the next source operation has
completed. Next can be synthesized by performing a single-
step, possibly followed by a finish (if the operation was a
call). Consequently, next is implemented by a few lines of
SELF code in our system.

5.4 Breakpoints and watchpoints

SELF currently supports breakpoints through source trans-
formation: the programmer inserts a breakpoint by simply
inserting a send of halt into the source method (halt
explicitly invokes the debugger). To implement breakpoints
without explicit changes by the programmer, the debugger
could perform this source transformation transparently.

Watchpoints (“stop when the value of this variable
changes”) are also easy to provide because SELF is a pure
object-oriented language, and all accesses are performed
through message sends (at least conceptually; the compiler
will usually optimize away such sends). To monitor all
accesses to an object’s instance variable x, we can rename
the variable to private_x and install two new methods x
and x: which monitor accesses and assignments, respec-
tively, and return or change private_x. The dependency
system will invalidate all code that inlined the old definition
of x or x: (i.e., that directly accessed or changed x).

6. Discussion

In this section, we discuss some of the strengths and weak-
nesses of our approach and assess its generality.

6.1 Benefits

Our debugging technique has several important advantages.
First, it is simple: the current implementation of the trans-
formation process consists of less than 400 lines of C++
code on top of the code implementing the debugging infor-
mation described in section 3.1. Second, it allows a loose
coupling between debugger and compiler—neither has to
know very much about the other. Third, it places no addi-
tional restrictions beyond those described in section 2 on the
kind of optimizations which can be performed by the
compiler. Thus, many common optimizations such as
inlining, loop unrolling, common subexpression elimina-
tion, and instruction scheduling can be used without
affecting debuggability. Finally, our method is well suited
for an interactive system since it is incremental: usually, at
most one stack frame needs to be converted as a result of a
user command.

6.2 Current limitations

Using unoptimized code during debugging introduces a
potential performance problem when the user decides to
continue execution. Execution should proceed at full speed,
but some of the stack frames may be unoptimized.
However, this problem usually is not severe: only a few
frames are running unoptimized code, and the unoptimized
code will be discarded as soon as these frames return. All
other parts of the system can run at full speed.

Methods containing loops could still pose a problem since
they could remain on the stack in unoptimized form indefi-
nitely. However, we currently are working to solve the more
general problem of adaptive compilation [HCU91]. With
adaptive compilation, methods are created in unoptimized
form first to minimize compile pauses. Later, the frequently-
used parts are automatically recompiled with optimization.
Therefore, a system with adaptive compilation would auto-



matically reoptimize any unoptimized loops created by
debugging. The current SELF system already contains a
primitive form of adaptive compilation.

6.3 Generality

The debugging approach presented here is not specific to
SELF and could be exploited in other languages as well. Our
system appears to require run-time compilation for deopti-
mization, but systems without run-time compilation could
include an unoptimized copy of every procedure in an
executable or dynamically link these in as needed.

For pointer-safe languages like Lisp, Smalltalk, or a pointer-
safe subset of C++, our approach seems directly applicable.
In pointer-unsafe languagesJr like C which allow pointer
errors, interrupt points might be more closely spaced. The
debugger could potentially be invoked at every load or store
where the compiler could not prove that no address fault
would occur. But even if interrupt points caused by unsafe
loads or stores were indeed very frequent, our approach
would still allow at least as many optimizations as other
approaches for source-level debugging.

Pointers into the stack require special care during deoptimi-
zation if the locations of such pointers are unknown. In this
case, the address of a stack variable potentially referenced
by a pointer may not be changed. However, this problem
could probably be solved at the expense of some stack space
by requiring the layout of optimized and unoptimized stack
frames to be identical.

6.4 Implementation status

The first implementation of the debugging system was
completed in the spring of 1991 (recovering the source-level
state of optimized programs was implemented in 1989).
Today’s system implements all functions described in
section 5 and is in daily use at several research institutions.
A source-level debugger (written in SELF by Lars Bak) is
also part of the system. The SELF implementation is avail-
able free of charge via ftp from self.stanford.edu.

7. Cost

Providing full source-level debugging in the presence of an
optimizing compiler does not come for free. In this section,
we examine the impact of our techniques on responsiveness,
run-time performance, and memory usage.

fIna way, true source-level debugging of unsafe languages is something of
an oxymoron: since programs can overwrite arbitrary memory regions, they
can always produce behavior which cannot be explained at the language
(source) level. For example, if an integer is erroneously stored into the
location of a floating-point variable, the resulting behavior cannot be
explained without referring to the particular integer and floating-point
representations used by the system.

7.1 Impact on responsiveness

Neither the deoptimization process nor the use of interrupt
points are perceptible to users. The compiler typically
creates the unoptimized methods in about one millisecond
on a SPARCStation 1, and thus the pauses introduced by
dynamic deoptimization are negligible. Interrupt points
increase the latency for user and system interrupts by only a
few microseconds because an interrupt point is usually
reached within a few dozen instructions after the run-time
system has set the interrupt flag. In summary, providing full
source-level debugging in the SELF system has not reduced
its responsiveness.

7.2 Impact on run-time performance

Ideally, the performance impact of full source-level debug-
ging could be measured by completely disabling it and re-
measuring the system. However, this is not possible because
source-level debugging was a fundamental design goal of
the SELF system. Disabling debugging support would
require a major redesign of the compiler and run-time
system if any better performance is to be achieved. Further-
more, the garbage collector already imposes some
constraints on the optimizer, such as the requirement that
live registers may not contain derived pointers (pointers into
the middle of objects). In many cases, the optimizations
inhibited by garbage collection are very similar to those
inhibited by debugging requirements, such as dead store
elimination and some forms of common subexpression
elimination [Cha87]. Thus, it would be difficult to separate
the impact of garbage collection on optimization from the
impact of full source-level debugging.

However, we have measured some effects of source-level
debugging in the SELF system. To determine the impact of
debugger-visible names, the compiler was changed to
release registers allocated to dead variables even if they
were visible at an interrupt point. The performance
improvement with the changed compiler was insignificant
(less than 2%) for a wide range of programs [Cha92]. That
is, the extension of variable lifetimes needed to support
debugging seems to incur virtually no cost in our system.
(One reason for this might be that SELF methods are typi-
cally very short, so that few variables are unused in signifi-
cant portions of their scope.)

The system currently detects interrupts by testing a special
register; each test takes two cycles on a SPARC. This
polling slows down typical programs by about 4%; some
numerical programs with very tight loops are slowed down
by up to 13% [Cha92]. With a more complicated run-time
system using conditional traps, the overhead could be
reduced to one cycle per check, and loop unrolling could
further reduce the problem for tight loops. Alternatively, we
could switch to a non-polling system where the interrupt
handler would patch the code of the currently executing



procedure to cause a process switch at the next interrupt
point.

While we could not measure the full performance impact of
our debugging scheme, inspection of the generated code
indicated no obvious debugging-related inefficiencies. In
fact, the current SELF system has attained excellent perfor-
mance, executing a set of benchmarks four to six times
faster than ParcPlace Smalltalk-80" and about half the speed
of optimized C [CU91].

7.3 Memory usage

The debugging and dependency information for compiled
methods is kept in virtual memory in the current SELF
system. Table 1 shows the memory usage of the various
parts of compiled methods relative to the space used by the
machine instructions. For example, the physical-to-virtual
PC mapping is about 17% the size of the actual machine
code. The column labelled “adaptive” represents the default
configuration where only often-used methods are optimized,
while the “optimized only” column represents a system
which always optimizes. The data were obtained from two
interactive sessions using the prototype SELF user interface
(written in SELF). Both runs represent more than 7 Mbytes
of compiler-generated data.

The space consumption can be split into three main groups.
The first group contains the method headers and the
machine instructions; together, these represent all the infor-
mation needed to actually execute programs. The second
group contains the dependency links needed to invalidate
compiled code after programming changes (see section 4).
The third group contains all debugging-related information:
the scope descriptors and the PC mapping (see section 3.1),
relocation information for the garbage collector (to update

T Smalltalk-80 is a trademark of ParcPlace Systems.

object pointers contained in the debugging information),
and the various objects representing the methods, message
name strings, and object literals corresponding to the
compiled code. This includes all information needed to
recompile methods but not the source code itself F

The space consumed by debugging information varies with
the degree of optimization. Optimized methods show a
higher relative space overhead than unoptimized methods
because the debugging information for an inlined method is
typically larger than the inline-expanded code. Therefore,
the debugging information grows faster with more aggres-
sive inlining than the compiled code.

The total space overhead for debugging is reasonable. In the
standard system, debugging information uses slightly more
space (122%) than the instructions themselves; in the
system that optimizes everything, the overhead is 233%. In
other words, adding the debugging information increases
space usage (excluding the dependencies) by a factor of
between 2.2 and 3.3.

In order to be conservative, we have left out the space used
by the method headers even though they would also be
needed in a system without debugging. (The headers
contain the lookup key and various control information.) If
we include the headers, debugging increases space usage by
a factor of between 1.8 and 2.6.

The cost of supporting changes to running programs is
smaller. The dependency information occupies between 0.9
and 1.6 times the size of the instructions. Furthermore, the

¥ This grouping is a slight simplification. For example, the compiler
occasionally generates instructions just to support debugging. Also, a small
portion of the relocation information can be attributed to the code rather than
the debugging information. However, these simplifications do not
significantly distort the numbers presented here.

Category adaptive (default) optimized only
Machine instructions actual machine instruc- 1.00 1.00
tions and control infor-

Method headers mation 0.56 043
Dependency links to invalidate code after 092 1.69
programming changes
Scope descriptors 0.42 1.09

. . . to recreate the source-
Physical-to-virtual PC mapping level state of optimized 0.17 0.17
Relocation information for GC code and to recompile 0.24 0.39
methods
Method objects, strings, etc. 0.39 0.69

Table 1: Space cost of debugging information (relative to instructions)



current representation of the dependencies contains signifi-
cant redundancies. An alternate implementation could prob-
ably reduce the space usage significantly [Cha92].

As a rough comparison, when compiling the SELF virtual
machine, a standard commercial C++ 2.1 compiler gener-
ated 55 Mbytes of debugging information on top of an
executable of 2.4 Mbytes, incurring an overhead of a factor
of 24. Apparently, the compiler produced multiple copies of
identical debugging information, one copy per object file,
and the linker included them all in the executable file. Using
the GNU C++ compiler and GNU-specific pragmas, we
were able to reduce the space overhead of debugging infor-
mation to 11.2 Mbytes, for a factor of 5.7." While this
comparison should be taken with a grain of salt, it indicates
that despite the increased functionality, the space overhead
of debugging in our system is probably not higher than in
other systems.

During the design and implementation of our current data
structures, simplicity was considered more important than
space efficiency, and we did not optimize our representation
much. For example, our method headers and scope repre-
sentations use 32-bit words in many places where 16 or
even 8 bits would suffice. A reorganization of these data
structures could therefore result in significant savings. Other
techniques such as generating the debugging information on
demand by re-executing the optimizing compilation could
save even more space at the expense of longer pauses during
debugging interactions.

Furthermore, little of the debugging information needs to
remain in main memory at all times, and much of it can be
paged out. Ultimately, only the machine instructions need
be in main memory for working, debugged programs, thus
keeping real memory costs down to a fraction of the total
virtual memory costs.

8. Related work

The Smalltalk-80 system described by Deutsch and
Schiffman [DS84] pioneered the use of dynamic compila-
tion and interrupt points. To hide the effects of compilation
to native code, compiled methods included a mapping from
compiled code to source position. Activations normally
were created on the stack for run-time efficiency but were
converted on demand to the full-fledged activation objects
required by the language definition, and converted back
when needed for execution. As in our system, interrupts
were delayed until the next call or backward branch. Since

T GNU C++ allows the source-level debugging of optimized code but offers
only restricted functionality. Many optimizations are not transparent to the
programmer. The compiler version used for the measurements was GCC
1.94.7; version 2.0 generates a significantly larger executable.
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the compiler performed no global optimizations, the system
could provide expected behavior without deoptimization.

Zurawski and Johnson [ZJ91] describe a model for a
debugger (developed concurrently with this work) which
closely resembles ours, using “inspection points” and
dynamic deoptimization to provide expected behavior for
optimized code. However, the system does not use lazy
conversion. Furthermore, their definition of inspection
points allows asynchronous events such as user interrupts to
be delayed arbitrarily. Some of their ideas were imple-
mented for the Typed Smalltalk compiler [JGZ88], but the
system apparently could only run very small programs and
was not used in practice, unlike our system which is in daily
use.

Most of the other work on debugging optimized code places
the priority on optimization; the goal was to get as much
debugging as possible while preserving code efficiency
[CMR88, SW78]. Hennessy [Hen82] addresses the problem
of recovering the values of variables in the presence of
selected local and global code reordering optimizations. His
algorithms can usually detect when a variable has an incor-
rect value (in terms of the source program) and can some-
times reconstruct the source-level value. In contrast, we are
not willing to accept any debugging failures and therefore
do not perform optimizations which would create such situ-
ations at an interrupt point.

Zellweger [Zel83, Zel84] describes an interactive source-
level debugger for Cedar which handles two optimizations,
procedure inlining and cross-jumping, to provide expected
behavior in most cases. While her techniques can always
recover the source-level values of variables, they cannot
hide certain code location problems; for example, single-
stepping through optimized code would be difficult. Since
our system uses unoptimized code in these situations, we
are able to circumvent these problems.

LOIPE [Fei83] uses transparent incremental recompilation
for debugging purposes. For example, when the user sets a
breakpoint in some procedure, this procedure is converted
to unoptimized form to make debugging easier. However,
LOIPE cannot perform such transformations on active
procedures. Thus, if the program is suspended in an opti-
mized procedure, it is generally not possible to set a break-
point in this procedure or to continue execution by single-
stepping. To mitigate this problem, users were able to
specify the amount of optimization to be performed
(possibly impacting debuggability) and the amount of
debugging transparency needed (possibly affecting code
quality). As far as we know, most of the support for opti-
mized code in LOIPE was not actually implemented.



Tolmach and Appel [TA90] describe a debugger for ML
where the compiler always performs optimizations, but
where the program is automatically annotated with debug-
ging statements before compilation. To debug an optimized
program, the programmer has to manually recompile and re-
execute the program. Like unoptimized programs, annotated
programs run significantly slower than fully optimized
programs.

9.

Global optimization need not impair source-level debug-
ging. The SELF system increases programmer productivity
by providing full source-level debugging of globally opti-
mized code. To the best of our knowledge, SELF is the first
system to do so; other systems either compromise on debug-
ging functionality or severely restrict the kinds of optimiza-
tions that can be performed. In SELF, the compiler can
perform optimizations such as constant folding, common
subexpression elimination, dead code elimination, proce-
dure integration, code motion, and instruction scheduling
without affecting debuggability.

Conclusions

Two techniques make this possible: lazy deoptimization and
interrupt points. The optimizations performed by the
compiler are hidden from the debugger by deoptimizing
code whenever necessary. Deoptimization supports single-
stepping, running a method to completion, replacing an
inlined method, and other operations, but only affects the
procedure activations which are actively being debugged;
all other code runs at full speed. Debugging information is
only needed at relatively widely-spaced interrupt points, so
that the compiler can perform extensive optimizations
between interrupt points without affecting debuggability.
Our debugging techniques is not specific to SELF and could
be applied to other programming languages as well.
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