
Experiencing SELF Objects:
An Object-Based Artificial Reality*

BAY-WEI CHANG (bay@self.stanford.edu)
DAVID UNGAR† (ungar@self.stanford.edu)

Computer Systems Laboratory, Stanford University, Stanford, California 94305

1 Introduction

Programming is hard. Programming forces the programmer to deal with many
things at once, to grasp complex relationships between elements in a program, and
to manage the many dependencies between those elements. Programming taxes the
programmer’s short term memory.

The SELF project strives to make the programmer’s job easier by combining
good language design, efficient implementation, and a user interface tightly
coupled to the language. SELF is a dynamically-typed, prototype-based, object-
oriented language. This paper describes the approach we have taken with the
design of the user interface for SELF. Detailed description of the language and
implementation can be found in [1, 2, 6, 11].

Our prototype user interface for SELF provides browsing and inspecting of SELF
objects by combining an object-based model with an artificial reality. Emphasizing
the problem-domain objects rather than views of those objects discards a layer of
indirection found in conventional window-based user interfaces. Placing those
objects in an artificial reality reduces the cognitive load on the programmer, by
exploiting the programmer’s already internalized knowledge of how objects in the
physical world behave. Our goal is to make the user interface invisible, and thus
make SELF objects and the SELF world real.

*This work has been generously supported by a National Science Foundation Graduate Fellowship
and National Science Foundation Presidential Young Investigator Grant #CCR-8657631, and by Sun
Microsystems, IBM, Apple Computer, Cray Laboratories, Tandem Computers, NCR, Texas Instru-
ments, and DEC.

†Author’s present address: Sun Microsystems, 2500 Garcia Avenue, Mountain View, CA 94043.



126 CHANG AND UNGAR

The next section provides an introduction to the prototype SELF user interface
via a brief tour of some of its aspects. Section 3 discusses the power of an artificial
reality in a programming setting and how adoption of an artificial reality in the
SELF interface works for the programmer. Section 4 examines the benefits of an
object-based model and section 5 follows with a look at the personality of SELF
objects. Finally, we conclude with some observations of the lessons to be learned
from this work.

2 The SELF artificial reality

The SELF artificial reality consists of SELF objects populating otherwise empty
space. Figure 1 shows a typical SELF object.

This object, a box with other boxes glued on its face, can be grabbed with the
mouse, which can be thought of as a “virtual” hand, and moved about in its world
(the screen). The object keeps up with the programmer as it is dragged around,
floating in front of any other objects in the world.

The object in Figure 1 represents the prototypical circle in SELF, with center at
the origin and unit radius. Like all SELF objects, this circle object consists of a set
of slots, which are the wide boxes on the face of the object. Each slot has a name—
the words on its face—and contents. The contents of a slot, which is just another
SELF object, is represented by a box on the face of the slot, indicating containment.
The circle object of Figure 1 has five slots: two slots hold the center point and the
radius of the circle, two slots are assignment slots that permit the contents of the
center and radius slots to be changed, and the final slot is a parent slot (indicated
by the asterisk after the name of the slot) that holds an object that the circle inherits
from.

Figure 1. A SELF object.



EXPERIENCING SELF OBJECTS 127

Some SELF objects have names.1 Well-known objects, like the circle prototype
object, have a name that is the path of slots from the root object (known as the
“lobby”). Thus, sending the message circle to the lobby returns the prototypical
circle object. Other objects, like integers and points, know how to print themselves
and are named accordingly. Since the current SELF user interface is used as a
browser and inspector, most objects encountered are well-known and thus are
named. (The bulk of objects in an executing program have no name, since they are
created dynamically and typically cannot be reached by any path starting at the
lobby.) The name of an object appears at the top of the object. The name of an
object that is contained in a slot is imprinted on the “contents” box on the slot face.

To examine the contents of the circle’s center slot, the programmer grabs that
contents box (by clicking on it with the mouse). The contents of the slot, the point
object 0@0, appears on the screen (“sprouts”), connected by an arrow to the
contents box from which it sprouted. In the future, sprouting will cause the contents
box to detach and smoothly grow into the full object; a contents box will be just
like a condensed form of an object.

Sprouting is simply a special case of grabbing; after sprouting an object, the
programmer can move it to wherever he wishes before releasing the mouse button.
As he moves it, any connecting arrows stretch like rubber bands. The movement of

1Names in SELF are not part of the object insofar as the programmer does not bestow a name to
each object. The language semantics have no separate provision for objects to be given a name; the
SELF artificial reality infers the names it uses.

Figure 2. Objects are connected by arrows.



128 CHANG AND UNGAR

the objects and arrows occurs at a high enough frame rate2 to provide the illusion
of reality.

In studying the workings of objects in a program, the programmer will typically
sprout many objects on the screen. Objects that are no longer being examined can
be removed from the screen (currently, by clicking a different mouse button). The
resulting world is a number of objects arrayed on the screen, with intrinsic relations
being shown by arrows connecting objects and extrinsic information often being
shown by the objects’ placement on the screen relative to one another.

Figure 3 shows part of a simple shape hierarchy. The prototypical circle inherits
from the circle traits object, which holds shared behavior for all circles (in a similar
way that a Circle class in a class-based language would hold behavior for all
instances of circles). The circle traits object in turn inherits from the shape traits
object, which is also a parent of the triangle traits object.

Although both circle traits and triangle traits have a slot containing the shape
traits object, only one shape traits object is on the screen. Since there is only one
shape traits object in the system, only one such object exists in the SELF artificial
reality. If the programmer sprouts the parent slot of triangle traits when the shape
traits object is already on the screen, an arrow connects the slot to the existing
shape traits object, and the virtual hand (the mouse cursor) moves to that object.The
integer object zero in Figure 3 provides another example. It is referenced by both
the x and y slots of the 0@0 point object as well as many other places in the system.
This is one way that the SELF artificial reality maintains the identity of objects.

Both the SELF artificial reality and the objects in that world have certain person-
ality traits that contribute to the programmer’s interaction with the system. A closer
examination of these traits follows in the next three sections.

3 Artificial reality in the SELF interface

The user interface is the means with which the programmer accesses and manip-
ulates the objects in his program. Traditional interfaces present themselves as a
tool, a framework for the programmer’s interactions with the objects in the system.
The interface is clearly visible; there is never any doubt that the programmer is
interacting with the interface, which translates his actions to access the problem-
domain objects on his behalf. The interface is a barrier between the programmer
and the objects in the system.

Applying the artificial reality paradigm to the user interface helps to minimize
that barrier. Objects in an artificial reality behave according to the laws of that arti-
ficial world. When those laws are similar to the physical world, the user is able to
use his intuition to understand an object’s behavior. In ARK [9, 10], for example,
objects have mass and velocity, and obey such physical laws as gravity and inertia.

230 frames per second for medium-sized objects on a GX-equipped Sun Sparcstation-1.



EXPERIENCING SELF OBJECTS 129

Tossing an ARK object causes it to continue moving in its original direction indef-
initely. If there is friction in the ARK world, the object will slow down and come
to a stop. Behavior like this is easy for the user to understand, since it is the sort of
behavior of objects in the everyday world with which the user has been interacting
with since birth. Once the user accepts that the artificial world on the screen
behaves in large part like the real world, he will come to forget that he is dealing
with a user interface. New tasks in the environment are learned more quickly and
naturally.

But artificial reality is powerful not only because it provides an environment in
which behavior is easy to learn and understand, but also because it removes a layer
of indirection between the user and the objects in the system, thus eliminating
much conceptual overhead needed to operate within the interface. This is important
in a programming environment, in which the concern is less for the learnability for

Figure 3. Multiple slots may point to the same object.



130 CHANG AND UNGAR

a novice user than it is for the usability for an experienced programmer. The
programmer need not spend as much of his attention on operating the user inter-
face, since (in an artificial reality based on a physical world metaphor) those skills
have already been internalized as part of his lifelong interaction with the physical
world. The ideal is for the notion of an interface to vanish completely, to be
replaced by a portal through which the user enters an artificial world populated by
the objects at hand.

The personality of an artificial reality is determined by the laws that the world
and the objects in the world obey. The SELF artificial reality relies on a physical
world metaphor. Some of the aspects of the personality of the SELF artificial reality
are:

• Space. Initially, the world on the screen contains but a single object, typically
the lobby object. From the lobby, the programmer can navigate to any well-
known object in the system, simply by sprouting objects in slots and following
those paths. As objects are sprouted, they are placed by the programmer
throughout the space of the world.

• Solidity. The three-dimensional look of boxes, illuminated by an off-screen
source of light, make objects solid. Moving an object moves the actual object
around the screen, not an outline, which contributes to maintaining the solidity
of objects. Achieving a high frame rate further reinforces solidity by avoiding
discontinuous jumps.

• Physical interaction. The programmer manipulates objects by grabbing them
to pick them up. Sprouting a slot is also performed by grabbing the contents
box on the slot. Since the objects are in an artificial world, the mouse-
controlled cursor is thought of as an artificial hand in that space, an extension
of the programmer’s real world hand.

• Limited depth. Although the SELF artificial reality does not yet have a true
third dimension, objects may overlap one another. Since objects themselves are
three-dimensional, the effect is a world of limited depth in which objects float
in front of and behind one another near the surface. Picking up an object brings
it the closest to the programmer; as a result, there are also no collisions between
objects, since objects being moved about are in front of all other objects. We
are investigating ways of using true depth, shadows, and collisions in the SELF
artificial reality.

The physical metaphor in the SELF artificial reality permits the programmer to
think about and work with SELF objects without the additional weight of dealing
with an obtrusive interface. By concentrating on maintaining the illusion of an arti-
ficial reality, it attempts to make the interface itself invisible.



EXPERIENCING SELF OBJECTS 131

4 Object-based interfaces

Conventional interfaces treat problem-domain objects as objects hidden within
the system, accessible only via the tools of the user interface. These tools provide
views of the problem-domain objects, each tool showing some aspect of objects in
the system. Examples are the Smalltalk-80 [3] and Trellis [7] environments. Small-
talk-80 uses different tools for different activities: browsers show classes and the
methods defined in classes, inspectors show the instance variables of objects. This
style of user interface can be called tool-based or activity-based [4].

The activity-based model emphasizes the manipulation of user interface tools to
provide views of problem-domain objects. In contrast, the object-based model
treats problem-domain objects as the objects to be manipulated in the user inter-
face. Problem-domain objects are made concrete in the interface, and the
programmer identifies objects with their user interface representation. No such
identification occurs in activity-oriented interfaces, because a tool is used to view
many different objects over its lifetime. That the tools themselves are concrete is
of little use to the programmer, since the tools are not the problem-domain objects
that the programmer is concerned with.

Identifying problem-domain objects with their representation in the interface
affects the programmer’s mental model of the objects in the system. If the identifi-
cation is complete enough, the programmer will come to think of the objects
depicted on the screen as the actual objects they represent; their behavior in the
interface will then contribute to the programmer’s mental model of the objects in
the language. Therefore it is critical that the behavior of objects in the interface
closely follow the semantics of the language. Behavior inconsistent with the
language semantics will inevitably confuse the programmer; conversely, a careful
design supporting the language model can make the interface a powerful tool in
aiding the programmer in understanding and working in the language.

Examples of object-based interfaces include the Star interface [8] and the Macin-
tosh Finder [12]. The Macintosh Finder represents directories as folders. Opening
a folder yields a window, which may contain folders as well as icons representing
files. Folders and file icons are directly manipulatable in the interface; they may be
moved about in the window, or moved to another folder. Since the user identifies
files with their icons, moving an icon from one folder to another means the same to
the user as moving the file from one directory to another, but in place of some
abstract notion of a directory there is the concrete image of folders containing files.

However, the object-based model breaks down in some places in the Finder. A
window representing an open folder does not share full identification with the
folder; it is really another view of the folder. Not only do both the folder window
and the folder icon exist on the screen in different places at the same time, a
window of an open folder cannot be moved to another folder like a folder icon can.
The object-based model in the Finder applies only to icons.



132 CHANG AND UNGAR

The Mjølner environment [4] also adopts an object-based model, in which
elements of programs are represented by hierarchical windows. The hierarchical
windows in Mjølner are well-matched with the block structure of the languages it
is designed to support, clearly expressing containment relations. In addition, it is
an explicit goal of the Mjølner environment to create an identification between the
elements of the program and individual windows; for example, referencing an
element that is already somewhere on the screen does not result in a new window
on that object; instead, the programmer’s attention is directed to the element
already on the screen. The Mjølner environment is a big step in directing the
programmer’s attention away from the interface to the objects in his program. But
we want to go farther.

5 The object-based model in the SELF interface

The SELF interface completely eschews the notion of windows, which imply a
view into something, in favor of an artificial concrete reality. Using an object-based
model in the context of an artificial reality allows the SELF interface to forge a
much stronger identification of interface objects with problem-domain objects. It
attempts to coax the programmer into thinking of an object in the interface as being
the problem-domain object, rather than simply representing it. As a result, the
programmer’s mental model of the language will be more heavily influenced by the
model presented in the interface. Since the interface makes the mental model
explicit and concrete, the programmer should be able to think about and interact
with objects more naturally.

Another consequence of integrating artificial reality and an object-based model
is the elimination of a separate notion of tools in the user interface. Tools are indi-
rect mechanisms for manipulating and examining objects; the object-based
approach, coupled with an artificial reality to provide natural and intuitive interac-
tion with objects, transfers those powers to the objects themselves. Objects in the
interface should, through their very nature, supply all the functionality that the
programmer will need of them: this is simply consistent with the concept of manip-
ulating real objects in a real (well, artificial) world. Therefore the design of an inter-
face shifts focus from the functionality of tools to the personality of objects.

Objects in the artificial world reflect their personality as objects in the SELF
language:

• Identity. A SELF object has a definite identity independent of state changes. In
the artificial world, it is a solid object with a single existence. Therefore,
multiple references to that object will direct the programmer to one object on
the screen, rather than creating multiple interface objects corresponding to the
problem-domain object. Well-known SELF objects are globally accessible via
a path from the lobby. An object on the screen reflects this characteristic by
displaying this path like a name tag.



EXPERIENCING SELF OBJECTS 133

• Composition. A SELF object is composed of a set of named slots referring to
other objects. In the artificial world, an object is a large box, with smaller boxes
glued onto its face. Each smaller box has a name—the slot name—and yet
another smaller box—the slot’s contents—glued onto it.

• Uniformity. In the SELF language, everything is an object, down to the smallest
integer. All things in the SELF artificial world also share a basic likeness; they
look and feel the same.

• Connectivity. SELF programs are networks of interconnected objects. In the
artificial world, relationships between objects are indicated by stretching
arrows as links between those objects. Two objects are connected if one is in
one of the other object’s slots. The connections between objects can become as
complex as the web of relationships demands, with many arrows pointing out
from an object (each from a different slot) and many arrows pointing to an
object (originating from slots in which the object is in). Since arrows stretch
and remain connected to objects wherever they move, connections are
maintained until the programmer explicitly decides to remove them from view.

• Referral. To understand an object’s role in a program, it may be necessary to
find all of the object’s children, or all the objects that refer to it. To understand
a slot’s role in a program, it may be necessary to find all slots with the same
name. An object in the artificial world can show the programmer a list of
objects whose slots it is in, or a list of objects that inherit from it. A slot in the
world can likewise show the programmer all objects containing its namesakes.
Our current implementation of these functions uses buttons on the object and
its slots. Figure 4 shows these buttons. In the future we hope to devise a more
natural interaction with the object for referrals.

Figure 4. Object with reference buttons.



134 CHANG AND UNGAR

• Interior vs. exterior. Some information about objects can be considered part of
the exterior of the object, while other information is part of the interior. SELF
provides the notion of visibility of slots in its encapsulation scheme: public
slots are accessible by anyone, private slots can only be accessed by the object
and its descendants. The current SELF user interface provides access to the
interior of objects, displaying all slots, public or private, for each object. Future
work will define what it means to examine only the exterior of an object, its
public slots.

• Structure vs. behavior. The structure of hierarchies of objects in SELF is
provided by the inheritance of objects through parent slots. The SELF artificial
world reflects this structural outlook in its box-and-arrows approach to
inheritance. Behaviorally, however, the parents of an object are part of that
object. In SELF this is as valid a model of the language as the structural model.
We are studying ways to provide the behavioral model of objects as an
alternative means of presenting inherited slots in the artificial world.

• Intensional vs. extensional structure. The extensional structure of objects
considered as a system is determined by their relationships to one another by
virtue of being in one another’s slots. These relationships are made explicit by
arrows which link objects when one object is sprouted from the slot of another.
The positions of problem-domain objects on the screen have no semantic
meaning; the programmer is the one who moves objects to their places.
However, these positions, while devoid of information to the program, are
usually full of information for the programmer; for example, positional
information can indicate the inheritance relationships in a group of objects.
The layout of objects on the screen are intensional.

We are investigating a technique we call poses, which acts like a snapshot,
capturing the layout of objects on the screen into a pose object. Activating a pose
object at a later time instructs all objects that were part of the pose to move to their
former locations and all other objects to get out of the way, effectively recon-
structing the layout that was captured earlier. Unlike rooms [5], the user does not
move to recapture a certain layout; the objects in the world do. Also unlike rooms,
objects maintain their identity and are never found in two places at once. A pose
object does not include the actual objects; it is more like a specification, and when
activated, a director. Poses promise to provide the convenience and functionality of
maintaining several layouts of objects while still adhering to the artificial reality
and object-based model of the user interface.

6 Conclusions

The SELF user interface encourages the programmer to think of objects in the
artificial world as real. It attempts to strip away the conceptual overhead of a user
interface, replacing tools with the objects themselves and the interface with an arti-



EXPERIENCING SELF OBJECTS 135

ficial reality. As a result, the programmer is brought closer to the SELF objects he
is working with: rather than being restricted to viewing objects from afar and
manipulating them indirectly, the programmer enters the SELF artificial world and
can experience SELF objects directly.

The SELF interface described in this paper supports browsing the system and
inspecting objects. Future work will continue to follow the principles laid out in
this prototype to expand the interface into a complete programming environment.
Among these principles are two observations we have found particularly important
in an object-based artificial reality. First, the illusion of the artificial reality must be
carefully maintained at all times. A lapse in the illusion, like a sunspot, disrupts
communication more than its size would indicate. Even a small lapse can destroy
the illusion, make the user consciously aware of the interface, and divert his atten-
tion from the problem at hand. Second, emphasis must be placed on the personality
of objects in the system to reap the full benefits of an object-based interface. By
discarding tools and views and giving responsibility to the objects themselves, the
user interface places the emphasis on the problem-domain objects instead of inter-
face-level objects, and the programmer can think about the objects rather than the
tools.

7 Acknowledgments

Craig Chambers and Urs Hölzle contributed many ideas in discussions regarding
the nature, functionality, and appearance of the SELF user interface. Randall B.
Smith and his reality deserve the credit for setting our feet on the path of an object-
based physical metaphor.

References

1. Chambers, C., and Ungar, D. Customization: Optimizing Compiler Technol-
ogy for SELF, a Dynamically-Typed Object-Oriented Programming Lan-
guage. In Proceedings of the SIGPLAN ’89 Conference on Programming
Language Design and Implementation. Published as SIGPLAN Notices, 24, 7
(1989) 146-160.

2. Chambers, C., Ungar, D., and Lee, E. An Efficient Implementation of SELF,
a Dynamically-Typed Object-Oriented Language Based on Prototypes. In
OOPSLA ’89 Conference Proceedings. Published as SIGPLAN Notices, 24,
10 (1989) 49-70. Also to be published in Lisp and Symbolic Computation, 4,
3 (1991).

3. Goldberg, A. Smalltalk-80: The Interactive Programming Environment. Ad-
dison-Wesley, Reading, MA (1984).



136 CHANG AND UNGAR

4. Hedin, G., and Magnusson, B. The Mjølner Environment: Direct Interaction
with Abstractions. In ECOOP ’88 Proceedings. Published as Lecture Notes
in Computer Science #322, Springer-Verlag, New York, NY (1988) 41-54.

5. Henderson, A. D., and Card, S. K. Rooms: The use of multiple virtual work-
spaces to reduce space contention in a window-based graphical user interface.
In ACM Transactions on Graphics, 5, 3 (1986) 211-243.

6. Lee, E. Object Storage and Inheritance for SELF, a Prototype-Based Object-
Oriented Programming Language. Engineer’s thesis, Stanford University
(1988).

7. O’Brien, P. D., Halbert, D. C., and Kilian, M. F. The Trellis Programming En-
vironment. In OOPSLA ’87 Conference Proceedings. Published as SIGPLAN
Notices, 24, 12 (1987) 91-102.

8. Smith, D. C., Irby, C., Kimball, R., Verplank, W., and Harslem, E. Designing
the Star User Interface. In Byte, 7, 4 (1982) 242-282.

9. Smith, R. B. The Alternate Reality Kit: An Animated Environment for Cre-
ating Interactive Simulations. In Proceedings of 1986 IEEE Computer Soci-
ety Workshop on Visual Languages (1986) 99-106.

10. Smith, R. B. Experiences with the Alternate Reality Kit: An Example of the
Tension Between Literalism and Magic. In Proceedings of the CHI+GI ’87
Conference (1987) 61-67.

11. Ungar, D., and Smith, R. B. SELF: The Power of Simplicity. In OOPSLA ’87
Conference Proceedings. Published as SIGPLAN Notices, 22, 12 (1987) 227-
241. Also to be published in Lisp and Symbolic Computation, 4, 3 (1991).

12. Williams, G. The Apple Macintosh Computer. In Byte, 9, 2 (1984) 30-54.


