
Published in OOPSLA’94 Conference Proceedings, Portland, OR, October 1994.

1

Sifting Out the Gold
Delivering Compact Applications

from an Exploratory Object-Oriented Programming Environment

Ole Agesen
Computer Science Department

Stanford University
Stanford, CA 94305, USA
agesen@cs.stanford.edu

David Ungar
Sun Microsystems Laboratories

2550 Garcia Ave
Mountain View, CA 94043, USA

David.Ungar@sun.com

Abstract

Integrated, dynamically-typed object-oriented
programming environments offer many advantages,
but have trouble producing small, self-contained
applications. Recent advances in type inference have
made it possible to build an application extractor for
Self. The extractor was able to extract a medium-
sized application in a few minutes. The extracted
application runs in a tenth the space of the original
environment. Except for extracting reflection and
sends with computed selectors, the extractor runs
without human intervention and fully preserves the
behavior of the application.

1 Introduction
Why doesn’t everyone use a language like
Smalltalk? After all, object-oriented programming is
the rage, and the Smalltalk-80 and -V programming
environments pamper the programmer with good
tools, a comfortable GUI, clean semantics, and rapid
turnaround. It may be that programmers are
unfamiliar with or do not like the language. On the
other hand, more pragmatic reasons may be
influencing them:

© 1994 ACM (see OOPSLA’94 proceedings for details).

• Smalltalk’s speed lags an order of magnitude
behind C’s;

• Smalltalk’s lack of static type checking can mask
errors;

• Smalltalk’s integrated development environment
and lack of static typing make it hard to deliver
small applications.

Recently, great strides have been made towards
leveling the playing field for performance and error
detection of dynamically-typed object-oriented
languages [Deutsch & Schiffman 1984, Hölzle &
Ungar 1994, Agesen et al. 1993]. Application size,
however, has remained an obstacle preventing
programmers from using dynamically-typed
exploratory programming environments. Without
some sort of application extraction, even the
simplest program such as “Hello World” has the
same size as the entire programming environment.

This paper reports on the results of applying type
inference to the task of extracting applications from
Self [Ungar & Smith 1987], a streamlined successor
of Smalltalk. We have succeeded in extracting
several benchmarks and a real application in regular
use with only minor modifications. The image size
of the extracted application is one tenth that of the
complete Self system.

2

1.1 Contributions

We have designed, implemented, and tested a new
algorithm to extract applications from exploratory
object-oriented programming environments. This
algorithm is

• automatic: it runs without programmer
intervention, although it will accept advice to
improve the results;

• sound: it preserves the full semantics of the
extracted application;

• efficient: extraction, including type inference,
takes minutes;

• effective: extracted applications shrink by an
order of magnitude (of course depending on how
big the application is in the first place; we
describe a specific medium-sized example in
detail below);

• general: although our implementation is specific
to Self, the algorithm can be readily applied to,
say, Smalltalk-80 and CLOS.

2 Background
Since we describe our extraction algorithm as it
applies to Self, we briefly introduce Self in Section
2.1. The example application we use to describe the
extraction algorithm is presented in Section 2.2.

2.1 Overview of Self

An object in Self consists of slots. A slot has a name
and a value. Slot names are always strings, but slot
values can be any Self object, either a data object or
a method object. Slot names can be marked with an
asterisk to show that they designate a parent. When
sending a message, if a match does not occur within
the receiving object, its parents’ slots are searched,
and then slots in the parents’ parents, and so on. In
Self, any object can potentially be a parent for any
number of children, or a child of any object. When
an object is found in a slot as a result of a message

send, it is run; no extra step is needed to invoke a
method. A data object without code runs by just
returning itself.

Self might be called an extremely object-oriented
language, because what other languages do with
special mechanisms, Self does with objects and
messages. The uniformity extends to control flow
structures (Self implements these with dynamic
dispatching), variable scoping and accessing
mechanisms (Self allows inheritance of state), and
primitive types and operations (even an integer is an
object in Self). This total devotion to the object-
message paradigm simplifies the language, making it
a convenient test-bed for application extraction.

2.2 Our Sample Application:
PrimitiveMaker

PrimitiveMaker, the application we refer to
throughout this paper, was written before our work
on extraction began. The extractor was nevertheless
able to extract PrimitiveMaker unmodified, although
we had to make two minor changes elsewhere in the
Self world for extraction to succeed (see Section 4).

While detailed knowledge of PrimitiveMaker is not
needed, an overview is helpful. PrimitiveMaker is a
preprocessor that generates Self and C glue code for
foreign functions. For example, suppose a Self
programmer needs to call the C function open. The
programmer would create a “template file”
containing a line naming the function and specifying
the C types of its arguments and result. He would
next run the PrimitiveMaker on the file in order to
create three files. The first file contains a Self
routine that calls the primitive. The second file
contains a C stub that translates Self objects to C
values, calls the open routine, and translates the
return value back to a Self object. The third file
creates an entry in the Self virtual machine’s
primitive dispatch table. Most of the 600 primitives
in the Self system are implemented in this manner,
using PrimitiveMaker.

3

Grouping
Objects

1

Type
Inference

2

Selecting
Slots

3

Selecting
Objects

(Ungrouping)4
Dumping

5

primitiveMaker

Full Image, 5 Mb Extraction, 600Kb
primitiveMaker

Figure 1. The extraction algorithm takes five steps to extract an application.

3 How Application Extraction
Works

The input to the extractor is an image of objects
containing an application to be extracted. Typically,
the image is the “standard Self image” consisting of
core objects, glue, user interface, and additionally
one or more applications. The standard image alone
comprises 5.5 Mbytes. An application is anything
that can be executed by sending a single message to
an object. We designate the object and invoked
method the “main object” and “main method,”
respectively. Like the main function in a C
program, they explicitly define how to execute the
application. In addition, they implicitly delineate the
application: certain objects must be present for the
execution to succeed, whereas other objects can be
safely omitted. When extracting PrimitiveMaker, the
main object is primitiveMaker and the main
method is the one that compiles a template file.

Our extraction algorithm consists of five steps, as
shown in Figure 1. The harder sub-problem of
extraction is identifying what needs to be extracted.
The first four steps accomplish this, the fifth step
simply harvesting the fruit and dumping the selected
objects. The following sections describe each step in
detail.

3.1 Step 1: Grouping Objects

Type inference, the second step, is expensive. So
expensive, in fact, that it is infeasible to infer types
for each object individually. In Smalltalk, to
overcome this problem, one would infer types for
classes instead of individual objects, effectively
analyzing all instances of a class in parallel. In Self,
there is no such concept as classes built into the
language. Instead, we group objects, allowing the
type inference step to analyze groups of objects
rather than individual objects; see Figure 2. For
example, all smallInteger objects form a group.
Other groups are bigInts, points, and true (this group
has only one member). In our implementation,
groups correspond roughly to clone families
(grouping is actually based on a structural
comparison since in Self there is no way to tell if
two objects belong to the same clone family or just
happen to be similar).

Grouping involves a trade-off: finer groups make
type inference more expensive (there are more
groups to analyze), whereas coarser groups make
type inference less precise (it is not possible to
distinguish the types of different members of a
group). Ideally, we should group objects according
to their behavior (types), but this is not possible
without knowing the types. Instead, we approximate
behavior with structure. For extraction, this seems to
yield a satisfactory compromise between precision
and performance of type inference. In general, an

4

Grouping
Objects

1 Image, grouped

primitiveMaker

Full Image

primitiveMaker

Figure 2. Step 1 groups the objects in the image according to their structure.

adaptive approach to grouping may be necessary,
analogous to the adaptive type inference algorithms
described in [Plevyak & Chien 1993, Agesen 1994].

The extractor only groups objects as it encounters
them. This procrastination saves the effort of
grouping objects that are not reached during
extraction, and most objects are never grouped:
extracting PrimitiveMaker from an image with
100,000 objects, only 5000 of these are grouped, into
600 different groups. Sometimes it pays to be lazy.

3.2 Step 2: Type Inference

Suppose we need to extract an application that sends
the message size to the result of some expression
R. The image in which the application has been
developed may contain hundreds of methods called
size, for rectangles, dictionaries, sets, arrays and
other kinds of objects. Which of the myriad size
methods should be extracted?

The extractor needs some information about the
kinds of objects that could possibly result from
computing R. For example, if it (somehow) could
discover that R never returns hash tables, there
would be no need to extract the size method for hash
tables (unless, of course, it was needed elsewhere).
In a prior publication, we report on a type inference
algorithm that can compute this kind of information
[Agesen et al. 1993]. (See also [Plevyak & Chien
1993] for more recent results, and [Agesen 1994] for
a comparison of different variations of the type
inference algorithm). The second step in the
extraction of PrimitiveMaker invokes our type

inference algorithm on PrimitiveMaker1. After type
inference, every expression and slot in
PrimitiveMaker is annotated with the set of groups it
might possible yield. Henceforth we shall refer to
such a set as a type.

Figure 3 shows the types inferred for the
glueArgCvts: method found in a certain
generator group in PrimitiveMaker. To avoid
clutter only selected type annotations are shown.
Without any further explanation of the role of this
method, let us take a look at the annotations
computed by the inferencer and see what we can
learn. For example, the type of the i argument is the
set {smallInt, bigInt}. This annotation means that
during execution of PrimitiveMaker, the value of i
will always be an object which is a member of either
the smallInt or bigInt group. Likewise, the type
annotation for the expression argCvts is {list}.
Anticipating the next step, the reader can now see
that only the asVector method that applies to lists
should be extracted (unless of course asVector is
sent to another group elsewhere in the application).
Finally, the type of a is a set of some 20 groups; thus
the glueify send is highly polymorphic. This send
alone tells us to extract the 20 respective glueify
methods.

1Invoking the type inference algorithm on
PrimitiveMaker does not mean that PrimitiveMaker
has already been isolated from the rest of the image.
It merely means that we invoke the type inference
algorithm on the main method and object of
PrimitiveMaker.

5

primitiveMaker

Type
Inference

2Image, grouped

abstractLinking generator
parent* = traits clonable.

glueArgCvts: start = (
 | r <- ''. v. |
 v: argCvts asVector.
 start upTo: v size Do: [|:i. a|
 a: v at: i.
 r: r, ', ', a glueify.
].
 r).

... several more slots ...

{list}

{smallInt}

{short_cvt, char_cvt,
 unsigned_cvt, ..., nil}

{smallInt, bigInt}

primitiveMaker

Figure 3. Step 2 invokes the type inference algorithm on the main object and method, producing type
annotations for all methods that the application may execute.

The inferred types are sound, but conservative
estimates of the dynamic (run-time) types. “Sound”
means that the types of the actual objects will always
be included in the inferred types. For example, since
the type of i was inferred to be {smallInt, bigInt},
soundness means that at any moment during any
execution of PrimitiveMaker, the object stored in the
i slot will either be a smallInt or a bigInt.
“Conservative” means that the inferred types may
overestimate the dynamic types. This explains why
nil shows up in the type of a (if nil ever was to
occur at run time, PrimitiveMaker would hit an
error, since nil does not understand glueify).
Conservatism is not a “weakness” that is unique to
our algorithm: any practical type inference algorithm
must be conservative, since exact type inference is
uncomputable.

The soundness of the type inferencer allows our
extraction algorithm to guarantee full preservation of
behavior of the extracted application. The fact that
the inferred types are conservative means that we
may sometimes extract objects that will actually not
be needed. We have not yet been able to measure the
degree to which this happens, but we are considering

applying a coverage tool to the extracted application
to measure how much of it is used dynamically over
several typical runs.

Type inference is the most expensive step. It takes
almost 3 minutes of CPU time on a 50 MHz
SPARC-station 10 to infer types for PrimitiveMaker
(this actually includes the time spent grouping, but
grouping is negligible). It also consumes a fair
amount of memory. Approximately 10 Mbytes of
data structures are built.

3.3 Step 3: Selecting Slots

An application extractor that altered the behavior of
the applications it extracted would not be very
useful, so in this step the extractor identifies a set of
slots that is large enough to fully preserve the
behavior of the application, yet as small as the
available type information permits. We call such a
set of slots “small and sufficient.” See Figure 4 for
an illustration. A small and sufficient set of slots can
be computed by simulating each send in the
application, so we attack two sub-problems:
collecting sends and simulating sends. (An efficient

6

Selecting
Slots

3
..

..

..

Small, Sufficient
Set of Slots. }{

..

primitiveMaker

Figure 4. Step 3 selects a set of slots to extract. The set is large enough to preserve the behavior of the
application, but as small as the available type information permit.

implementation will probably interleave the two sub-
problems; here we keep them separate for clarity).

Collecting sends. A transitive closure operation is
used to collect a sound (and small) approximation to
the syntactic sends that the application being
extracted may execute. First, initialize a set with the
sends in the main method. Then, for each send in the
set, type information leads to the set of methods that
may be invoked. The sends in these methods are
added to the set and the induction step is repeated
until the set of possible sends grows no more.

The procedure shown in Figure 5 implements this
transitive closure. When invoked on the main
method, it returns a list of all sends that the
application being extracted may execute.

Simulating sends. We now use the sends to mark a
small sufficient set of slots. The idea is to simulate
the sends one by one. During the simulation of a
send, the extractor marks all slots whose presence is
needed to preserve the behavior of the send.
Specifically, given a send and a possible receiver, it
marks the target slots that the send may invoke. In
addition, if a target slot is not found directly in the
receiver but instead is inherited through a chain of
parent links, it marks the parent slots on the
inheritance chain leading to the target slot. No
further slots are marked. Since the marked slots
preserves the behavior of every send for every
possible receiver, and since in Self all computation is
performed by passing messages, the behavior of the
application as a whole is preserved.

The procedure, MarkMinSuffSlots, shown in
Figure 6, formalizes this way of marking a sufficient
set of slots. The set of slots marked is minimal in the
restricted sense that no slot can be safely omitted if
everything that the type information predicts may
happen during execution can in fact happen. In other
words: the set of slots marked is as small as the
available type information permits. Of course,
availability of more accurate type information would
allow the extractor to mark a smaller set of slots and
still know that it is sufficient (as long as the type
information remains sound, a sufficient set of slots is
marked).

The only complication that may arise is specific to
Self: a lookup may encounter dynamic inheritance.
In that case, the extractor cannot straightforwardly
apply the standard lookup algorithm. Instead, to be
sound, it must search through all possible dynamic
parents. To do this, it consults the type information
that was computed for the dynamic parent slot,
which gives a — usually small — set of possible
parents (groups, actually) that the lookup proceeds
into.

Given the type information, collecting sends and
marking slots takes relatively little time. For
PrimitiveMaker the combined CPU time for
CollectSends and MarkMinSuffSlots is
approximately 20 seconds. A total of 2232 slots are
marked.

The result in this third step of extraction is a
mapping, MarkedSlots, from groups to sets of slots:

7

procedure CollectSends(m: method)
 var sends: list;
begin
 “mark m”; (* To break cycles when processing recursive methods. *)
 for each send in m.code do
 sends.append(send);
 for each receiverGroup in type(send.receiverExp) do
 accessedSlot := receiverGroup.lookup(send.selector);
 if accessedSlot.isMethod and ”it is unmarked” then
 sends.append(CollectSends(accessedSlot.contents));
 end;
 end;
 end;
 return sends;
end CollectSends;

Figure 5. Recursive procedure for collecting the set of all sends that an application may execute.

procedure MarkMinSuffSlots(APP)
begin
 “clear all slot marks”;
 for each send in CollectSends(APP) do
 for each receiverGroup in type(send.receiverExp) do
 “simulate the lookup of send.selector starting in receiverGroup”;
 for each matchingSlot that the lookup found do
 “set the mark in matchingSlot”;
 “set the mark in each parent slot on the path from the
 receiverGroup to the group containing the matchingSlot”;
 end;
 end;
 end;
end MarkMinSuffSlots;

Figure 6. Procedure to mark a sufficient set of slots for an application, given the sends that may be executed.

for a group g, MarkedSlots(g) is the slots in g that
were marked by MarkMinSuffSlots.

3.4 Step 4: Selecting Objects
(Ungrouping)

The fourth step, illustrated in Figure 7, determines
for each individual object in the image whether or
not it needs to be extracted. This is done by carefully
“lowering” the group level result from the previous
step to the object level.

Let x be an object and let g = group(x). If
MarkedSlots(g) = Ø, then there is no reason to
extract x, since no slot in x will ever be accessed by

the application. Instead, the extracted version can
safely replace any reference to x by a reference to
the empty object. Seen in this light, step 3 finds
those groups from which one or more members must
be extracted. A naive way to proceed would be to
extract all the members from the groups which had
one or more slots marked, and extract no members
from the remaining groups. Succinctly:

ExtractSet' = {x!Image | MarkedSlots(group(x)) " Ø}.

This extraction is clearly sound but potentially much
larger than need be. For example, just because the
application needs some point object, it is unlikely
that every point object in the image will be needed.

8

Small, Sufficient
Set of Slots. }{

Selecting
Objects

(Ungrouping)
4

primitiveMaker

Figure 7. Step 4 maps the group-level set of slots from the previous step back onto the object-level.

primitiveMaker

Dumping
5

Extraction, 600 Kb

primitiveMaker

Figure 8. Step 5, finally, dumps the slots (and objects) that were selected by the previous four steps.

The key to extracting a smaller but still sufficient set
of objects is to view the problem of identifying the
required objects as a reachability problem: if there is
no way for the application to reach a specific object,
there is no reason to extract it. This viewpoint leads
to a smaller extraction, because the application is
limited to accessing objects through the slots that
were marked in Step 3.

Definition. Let APP be an application. An object is
APP-reachable if and only if:

• it is the main object, or

• it is contained in a slot of an APP-reachable
object x and the slot is in MarkedSlots(group(x)).

(It may of course be the case that APP will never
access a specific slot in the specific object x, but
since we can not rule out the possibility, we
declare the contents APP-reachable).

It is an easy task to convert these rules into code so
we will omit it here. Applying the rules identifies a
sufficient set of objects:

ExtractSet = {x!Image | x is APP-reachable}.

Identifying the 457 objects that are PrimitiveMaker-
reachable takes only 3 seconds, given the

MarkedSlots mapping. These objects contain a total
of 2272 marked slots. Comparing this with the 2232
group level slots in MarkedSlots we conclude that
most groups have only a single reachable member.
(Literal objects, i.e. smallIntegers, floats, and strings
are excluded from ExtractSet, since they do not need
to be extracted; instead they are implicitly created by
the virtual machine at startup time).

3.5 Step 5: Dumping the Objects

The final step, illustrated in Figure 8, is to write out
a representation of the objects in the ExtractSet that
was identified in the previous step. Writing out a
possibly circular structure of objects is a standard
problem that has been previously addressed, e.g. by
the Smalltalk-80 BOSS system for storing objects in
a binary format [ParcPlace 1992, Section 27]. In our
case, there is only a slight twist to the problem: when
writing out an object x, only the slots given by
MarkedSlots(group(x)) are written out.

The extractor writes a single source file. It is “stand-
alone,” i.e. can be read into an empty virtual
machine. Subsequently, a binary image can be easily
obtained by simply invoking the primitive that writes
out an image.

9

Grouping Type inference Selecting slots Selecting obj’s Dumping objects
Time 3 minutes 20 seconds 3 seconds 5 seconds

Output 10 Mbytes of type annotations 2232 slots 2272 slots in
457 objects

155Kb/5230 lines source
(603 Kbytes image)

Table 1. Summary of the extraction process when applied to PrimitiveMaker. The starting point is a 5.5 Mb
image containing primitiveMaker; the final result is a 603 Kb image, also containing PrimitiveMaker.

The extractor’s dump files are quite naive. For
example, even when similar objects could be
obtained from each other by cloning, all of them are
still constructed from scratch. The consequence is
that merely looking at the size of the dump file can
be misleading. Comparing image sizes gives a more
consistent measure, although it should also be
remarked that Self images tend to be larger than
Smalltalk images. For PrimitiveMaker, a total of
155 Kb or 5230 lines of source was dumped in 5
seconds. The corresponding image size is 603
Kbytes, as compared to almost 6 Mbytes for the
original image.

3.6 Summary of the Extraction Process

The extraction time is dominated by the type
inference time. However, since the inferencer is
incremental it would take less time to re-infer types
after a change. At four minutes, the total extraction
time seems not unreasonable for a relatively
infrequent activity. Appendix A contains data for
several more applications we have extracted. These
include the full Stanford Integer Benchmarks suite,
originally collected by John Hennessy and later used
to characterize the run-time performance of the Self
system [Chambers & Ungar 1991]. The appendix
also reports on extracting richards, an operating
system simulation benchmark, and deltablue, a
multiway constraint solver algorithm [Sannella et al.
1993].

Table 1 summarizes the results of extracting
PrimitiveMaker. For each step, the time required and
the result produced are listed. For example, the
dumping step executes in 5 seconds and produces
5230 lines of stand-alone Self source code (which
can be converted to a 603 Kb image).

There are two road blocks that currently prevent us
from measuring the performance of the extractor on
many applications. First, the Self virtual machine
defines some 600 primitives, but the type inference
step only supports 200 of these. Second, the Self
system contains a scheduler that implements
concurrent processes; we have not yet generalized
the extractor to cope with concurrency.

4 Discussion
Application extraction raises a number of issues,
some specific to Self, some specific to our particular
extractor, and others more general. Since we expect
more people to use extraction than to implement it
(someday!), we will first, in Section 4.1, delve into
the way that a user’s programming style interacts
with extraction. Then, in Section 4.2, we discuss the
issues that impact the design of the extractor.

4.1 Programming Style Issues

Should you be worried about extraction while you
are writing programs? Are some styles of
programming more conducive to extraction than
others? The Self system, having evolved for years
without regard to extraction, is a good case to study.
Our recent experience suggests that although
extraction can cope with most stylistic variations,
two idioms, sends with computed selectors and
reflection, can pose problems.

4.1.1 Computed Selectors (Performs)
The _Perform primitive sends messages whose
names cannot be statically determined. This lack of
information forces the type inferencer to treat it very

10

self _Perform: (tokenList removeFirst, ’:’) With: true.

flag: tokenList removeFirst. “Get name of flag to set.”
flag = ’canFail’ ifTrue: [self canFail: true].
flag = ’canAWS’ ifTrue: [self canAWS: true].
flag = ’passFailHandle’ ifTrue: [self passFailHandle: true].

Figure 9. A perform found in PrimitiveMaker (above the line) and equivalent code not using perform
(below the line).

conservatively; thus potentially forcing extraction of
objects that are not really needed.

The top half of Figure 9 shows a perform from
PrimitiveMaker. The performed selector is computed
by removing a string from a list and appending a
colon to it. The receiver of the perform is self (i.e.,
primitiveMaker) and there is a single argument,
true. It turns out — but the extractor currently can
not determine this — that there are only three
possibilities for the performed selector, so the code
shown in the bottom half of Figure 9 is equivalent.
Not knowing the performed selector, except that the
syntax reveals that it passes one argument, the
extractor must assume that any 1-argument method
in primitiveMaker can be invoked. There are 46
such methods all of which must then be extracted.
But then the ball starts rolling and any method or
object accessed from any of the 46 methods also
need to be extracted, and so on.

We considered modifying PrimitiveMaker to not use
perform, but decided that it was more general to let
the extractor accept advice from the programmer. In
the specific example, he would specify that the
selector performed is one of canFail:, canAWS:,
and passFailHandle:. With this advice, precise
type inference is again possible. (In many cases, the
uncertainty of the performed selector is of minor
significance; then the programmer does not have to
give any advice).

If the programmer (inadvertently) gives unsound
advice, the extracted application might not run.
Fortunately, it is possible to detect if an unsound
advice was used during extraction. The idea is to

incorporate the advice into the extracted application
together with code verifying its soundness. In the
above example, the extracted application would
check that the performed selector is one of the three
which the programmer specified. Should a fourth
selector occur, it is of course too late to repair the
damage, but at least it is possible to output a precise
error message.

An alternative to advice-taking is to improve the
type inference algorithm, possibly by extending it to
track values. In the present example it would not
have worked anyway, since the performed selector is
read in from a file.

4.1.2 Reflection
Normally, the only thing that can be done with an
object is to send it a message and observe the result.
Sometimes, though, it is necessary to inquire about
the structure of an object. For example, the user
interface needs to find out the names of an object’s
slots in order to display it. This manipulation of the
structure of an object, known as structural reflection,
is accomplished in Self via meta-objects called
mirrors. While working on PrimitiveMaker, the
extractor bumped up against two uses of reflection,
although neither of them were specific to
PrimitiveMaker. They were both found in objects
implementing standard data types that are used by
most applications.

Reflection first crept into PrimitiveMaker through
the printString method in collections.
PrimitiveMaker prints out list objects during its
execution. Lists generate their printString by

11

invoking a general method that applies to several
kinds of collections. This general method reflects
upon the elements of the collection to see if they
implement printString and if not, to look them
up in a cache of path names for all prototypes. The
consequence of this reflection was dire: since our
type inference algorithm does no range analysis, it
had to assume that any of the objects in the path
cache might be pulled out. This in turn forced
extraction of every prototype in the system! It was a
one line change to avoid this use of reflection, but it
did incur the cost of making the collection
printString method less robust: a collection
with unprintable members is now itself unprintable.

The second way in which PrimitiveMaker uses
reflection is related to the previously discussed
performs. When a perform send fails, e.g. with
“message not understood,” a signal is generated by
the virtual machine. The signal takes the form of a
message sent to the currently executing process
object. When the process object receives the error
signal it calls into the reflective domain to handle the
signal. While we think it is within reach to extract
some reflective code, our type inference algorithm is
currently not able to deal with this specific example
without running out of memory.

The aggravating circumstance about both cases
described above is that neither was part of the
application proper. Rather, they were both found in
library code that most applications, not just
PrimitiveMaker, would end up using. This failure of
extraction could severely hinder a person somewhat
unfamiliar with Self who tried to extract an
application that, say, generated printStrings for sets.
How would he feel about getting every object in the
path cache extracted as part of his application?
Would he understand it? Probably not. Would he
find it acceptable? Certainly not. We see no easy
solution to this problem, except rewriting existing
code on a case by case basis as it is deemed
necessary, and encouraging programmers writing
new code to keep the extraction technology in mind.
Thus far, we have encountered only few and easily
handled problems.

4.2 Issues in the Design of an Extractor

We discuss three aspects that the designer of an
extraction algorithm should be aware of. Section
4.2.1 considers resources required for extraction.
Section 4.2.2 discusses how much behavior should
be preserved across extraction. Section 4.2.3
discusses the granularity that extraction should be
based on.

4.2.1 Resources Required to Extract an
Application

How good is our extractor? Several criteria could
apply. Some are obvious, like speed of the extraction
process and memory consumption. All other things
being equal, a faster, less memory demanding
algorithm is preferable, but it should also be noted
that extraction is not like compilation or debugging.
The latter activities are performed repeatedly during
program development. Extraction, on the other hand,
can conceivably be limited to taking place just
before delivery, so the resources consumed are less
important. Taking a few minutes, our extractor
seems to be fast enough to be useful.

Another resource to consider is programmer time.
Depending on how powerful the extraction
algorithm is, more or less programmer involvement
may be required. This issue should not be played
down. It has potentially serious consequences, e.g.
for reuse: if the programmer knows that he may have
to guide the extractor through code he is about to
reuse, he may choose not to reuse, because the effort
required to obtain a sufficient understanding of the
reused code may exceed the savings from reusing.
Although our type inference algorithm still has room
for improvement, it seems to be adequate to drive an
extractor and only rarely require programmer
intervention.

4.2.2 How Much Behavior is Preserved
Across Extraction?

Although an extractor should produce the most
compact applications it can, an algorithm that

12

extracts the smallest amount of code may or may not
be the best choice. While less code extracted is
better, the unavoidable consequence may be that less
behavior is preserved. One can distinguish between
three different levels of behavior preservation. In
order of increasing quality they are:

• Correct programs only. “If the unextracted
program executes without error, it is guaranteed
that the extracted program will execute without
error. No further guarantees apply.” This is the
minimally acceptable guarantee to provide, but
even so this level is dangerous. For example, if
there is a bug in the application (and isn’t there
always?), all bets are off when running the
extracted application because error conditions
may go unnoticed and the application silently
produces erroneous output. In some sense this
minimal degree of behavior preservation is
similar to switching off array bounds checking
before shipping an application written in, say,
Modula-2, a routine practice in our industry. This
level may be acceptable when the consequences
of unanticipated behavior are small relative to the
likelihood of encountering undiscovered bugs.

• Some error. “If the unextracted program
encounters an error, it is guaranteed that the
extracted program will also encounter some error,
but this may be a different error happening later
in the execution.” Compared with the previous
level of behavior preservation, this level has the
advantage that extraction will not convert a
visible error into a stealthy error. The person
running the application will be notified that an
error has happened, but no further promises are
given. In an extreme case, the application would
run for long enough in the erroneous state to
output erroneous results.

• First error. “If the unextracted program
encounters an error, the extracted program will
encounter exactly the same error.” This level of
behavior preservation facilitates debugging of
errors encountered after delivery (the most
expensive kind of errors). It also has the
advantage that the extracted application will

behave, to the highest possible degree, exactly as
the unextracted application, enabling
extrapolation of both successful and failing test
runs from the unextracted application to the
extracted application. For these reasons, we have
crafted our extractor to operate at this level.

The reason that our algorithm attains the strongest
guarantee is that it extracts enough code to preserve
the behavior of every send in the extracted
application, including the behavior of sends that may
fail. We have not yet been able to quantify how
much smaller a typical extracted application could
be if we were willing to settle with one of the two
weaker guarantees. In our case, to measure this, we
would have had to modify our type inference
algorithm to exploit the increased freedom; this,
however, was beyond the initial scope of our work
which takes the type inference algorithm for given.
The trade-offs between different levels of behavior
preservation vs. amount of code (vs. time to extract
etc.) merit future exploration.

4.2.3 Granularity
The smallest unit that can be extracted is an
important consideration because the larger it is, the
more excess baggage may be dragged along when
extracting the parts that were deemed necessary to
extract. We identify three different granularities that
extraction can be based on. From coarser to finer
they are:

• Module-based. A module-based extractor
includes or excludes modules as a whole from the
extracted application. A module is a language
(and programming style) dependent feature, but
typically consists of a set of objects and classes.
C++, while not employing extraction, uses a
module-based approach for including code. For
example, if a C++ programmer wants to use a
class, he does this by including the module
containing the class. The module is typically a
“.o-file,” and it may contain several other classes
and/or objects, all of which will end up in his
application.

13

• Object/class-based. An object-based extractor
extracts objects (or classes) as a whole. Objects
and classes are typically smaller than modules
and so less excess baggage will be extracted
along with the necessary objects. For example,
ParcPlace Smalltalk implements manual class-
based extraction: the programmer can specify a
list of classes to be removed from the image
[ParcPlace 1992, Section 16].

• Slot/attribute-based. A slot-based extractor such
as our algorithm offers an even finer resolution
because it filters out unused methods and
variables.

Other granularities are possible, including still finer
ones. It may, for instance, be reasonable to eliminate
dead code within methods. We have not yet
quantified the difference between the above three
granularities with respect to the amount extracted,
but we plan to do so by first computing a set of
sufficient slots. Then we can “round off” to whole
objects and dump an object-based extraction, and
round off to modules and dump a module-based
extraction. The object- and module-based extractions
obtained in this manner should be very good since
rounding off is done only at the very end, after
having delineated using the finer slot-based
resolution.

5 Previous Work
Although type inference is not the focus of the
present paper, it does provide the foundation for our
extraction algorithm. One of the earliest reports on
type inference is [Borning & Ingalls 1981]. They
describe a combined type declaration and inference
system for Smalltalk and in the conclusion they
write — with great foresight:

Also, the type system may help in tracing
control flow, thus making it possible to produce
application modules containing just the code
needed to run a particular application.

The type system that we have applied is different
from their early scheme. Without the precise type

information produced by our type inference
algorithm, automatic extraction would have been
much harder, if not impossible.

ParcPlace Smalltalk, ObjectWorks Release 4.1,
provides guidance on “deploying an application”
[ParcPlace 1992, Section 16]. An interactive tool,
the Stripper, can be used to remove classes from the
system. The Stripper has built-in knowledge of
which classes specifically support program
development (e.g., the compiler classes) and it can
remove these classes from the image. The
programmer may specify a list of extra classes to
remove. There is no guarantees, however, that an
essential class is not removed. Smalltalk/V contains
a tool with similar functionality, called the “Cloner.”
Smalltalk/V also has the “Object Library Builder.”
When given a set of root objects and an “import
list,” the Builder extracts all objects reachable by
transitive closure from the roots, up to, but not
including, objects on the import list. Typically, the
import list consists of standard classes and objects.
The Builder does not trace control flow, but
computes a simple transitive closure, hence may
extract unused objects [Digitalk 1993].

The Lucid Common Lisp system included
Treeshake, a delivery toolkit module that attempted
to extract applications by decompiling them and
discovering the interconnections between modules
[Boreczky & Rowe 1993]. It made no attempts to
resolve generic functions according to the types that
would be used at run time; all arms of any generic
function used would be included. In the end, it was
not considered an unqualified success [White 1994].

Allegro Common Lisp used a different strategy for
application delivery: instead of extracting an
application, it could start an application running in
an empty world and lazily load in modules as needed
[Boreczky & Rowe 1993, White 1994]. Although
this technique can reduce the memory footprint, it
would seem to still require as much disk space as the
full system. Furthermore, it may increase startup
time of the application.

Palsberg and Schwartzbach describe an algorithm
for eliminating dead code [Palsberg & Schwartzbach

14

1993]. Like our algorithm, the core of their
algorithm is a type inference system that enables
conservative control flow analysis. The
environments are different, however. Our algorithm
analyzes an image, sifting through objects (and
code) to determine what can be safely omitted. Their
algorithm analyzes a textual representation of a
program to find code that will never be executed.
Another difference is that their algorithm works on
programs written in BOPL (Basic Object
Programming Language), a minimal object-based
language designed for teaching and studying
programming language issues. While BOPL contains
the essentials of any “real” object-oriented language,
the minimality of the language and implementation
makes it unsuitable for writing large programs. Thus,
Palsberg and Schwartzbach did not have the luxury
of a large body of existing code to test their
algorithm on.

Statically-typed object-oriented languages such as
Beta, C++, and Eiffel typically rely on “traditional”
delivery tools inherited from procedural languages.
Usually, modules are compiled into “.o-files,”
possibly combining these into static or dynamic
library files. Applications are then built by invoking
a linker such as ld under Unix. The linker starts
with a specified set of .o-files and computes the
transitive closure of all references in these files and
any referenced .o-files in libraries. Then all
reachable .o-files are concatenated to form the
application.

This traditional approach differs from the
Self/Smalltalk situation in that there is no initial
confusion between the programming environment
and the application. While it is not necessary to
carve the application out of a massive development
environment (it is just built from the parts that
programmer or compiler specifies) unreachable code
may still enter the final application — and
increasingly so, as programs and libraries get larger
and code reuse becomes more common. According
to a recent study by Srivastava who analyzed several
large C++ programs, such programs contain
significantly more unreachable code than programs
written in procedural languages like C and Fortran.

Using a simple static analysis algorithm he found
that up to 26% of the code in large C++ programs is
unreachable [Srivastava 1992]. We believe that by
applying our algorithm, an even larger amount of
code can effectively be proven dead and thus safely
omitted from the linked applications.

6 Conclusions
The problem of delivering a modestly-sized
application without the overhead of a large
development environment has hindered the
acceptance of object-oriented exploratory
programming environments like Smalltalk-80, Self,
and CLOS. Recent advances in the technology of
type inference have made it possible to construct an
automated application extractor, and we have done
so for Self.

To be useful, extraction must preserve the behavior
of the extracted application. We identified three
different levels of behavior preservation. Our
extractor provides the strongest guarantees: even in
the presence of bugs in the application, extraction
will not alter the behavior.

We identified three granularities that extraction can
be based on: modules, objects, or slots. Our extractor
operates at the finest granularity, that of slots, in
order to winnow out as much unneeded data as
possible.

Although more experience is needed, the early
results are promising: a real application, and several
benchmarks, have been extracted in a few minutes of
CPU time. The resulting objects take only one tenth
the space of the full development environment.

Our extractor operates without human intervention.
However, two programming idioms can confound it:
sends with computed selectors (performs) and
reflection. Currently, programmer intervention may
be called upon in such cases.

In the future, we plan to apply our extractor to more
applications and to generalize it to better cope with
performs and reflection.

15

Acknowledgments. Discussions with several persons
helped improve this paper. In particular, we would
like to thank L. Bak, B. W. Chang, L. P. Deutsch, U.
Hölzle, O. L. Madsen, J. Palsberg, M. Sakkinen, and
M. I. Schwartzbach. B. Vokach-Brodsky and A.
Wirfs-Brock helped us understand Smalltalk/V. We
also thank the anonymous reviewers for their helpful
feedback.

The first author was generously supported by The
Natural Sciences Faculty of Aarhus University, The
Danish Research Academy, and Sun Microsystems
Laboratories. The Self project was supported by
National Science Foundation Presidential Young
Investigator Grant #CCR-8657631, Sun
Microsystems, IBM, Apple Computer, Cray
Laboratories, Tandem Computers, NCR, Texas
Instruments, and DEC.

References
[Agesen 1994] Agesen, O. Constraint-Based Type

Inference and Parametric Polymorphism. To be
presented at International Static Analysis Symposium
(SAS’94), Namur, Belgium, September 28-30, 1994.

[Agesen et al. 1993] Agesen, O., Palsberg, J.,
Schwartzbach, M. I. Type Inference of Self: Analysis
of Objects with Dynamic and Multiple Inheritance. In
Proc. ECOOP ‘93, Seventh European Conference on
Object-Oriented Programming, pages 247-267.
Springer-Verlag (LNCS 707), July 1993.

[Boreczky & Rowe 1993] Boreczky, J., Rowe, L.,
Building Common Lisp Applications with
Reasonable Performance. In Proc. Lisp Users and
Vendors Conference, 1993. Reprinted in SIGPLAN
Lisp Pointers, 6(3).

[Borning & Ingalls 1982] Borning, A. H., Ingalls, D. H.
H. A Type Declaration and Inference System for
Smalltalk. In Ninth Symposium on Principles of
Programming Languages, pages 133-141. ACM
Press, January 1982.

[Chambers & Ungar 1991] Chambers, C., Ungar, D.
Making Pure Object-Oriented Languages Practical. In
Proc. OOPSLA ‘91, ACM SIGPLAN Sixth Annual
Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 1-15,
October 1991.

[Deutsch & Schiffman 1984] Deutsch, L. P., Schiffman,
A. Efficient Implementation of the Smalltalk-80
System. In Proceedings of the 11th Symposium on the
Principles of Programming Languages, Salt Lake
City, UT, 1984.

[Digitalk 1993] Smalltalk/V for Win32 Programming,
Reference Manual, Chapter 17: “Object Libraries and
Library Builder,” Digitalk Inc., 1993.

[Hölzle & Ungar 1994] Hölzle, U., Ungar, D. Optimizing
Dynamically-Dispatched Calls with Run-Time Type
Feedback. In Proceedings of the ACM SIGPLAN ‘94
Conference on Programming Language Design and
Implementation (PLDI), pages 326-336, Orlando, FL,
June 1994.

[Palsberg & Schwartzbach 1993] Palsberg, J.,
Schwartzbach, M. I. Object-Oriented Type Systems.
John Wiley & Sons, 1993.

[ParcPlace 1992] ObjectWorks Smalltalk User’s Guide.
Release 4.1, Section 16: “Deploying an Application,”
Section 28: “Binary Object Streaming Service,”.
ParcPlace Systems, 1992.

[Plevyak & Chien 1993] Plevyak, J., Chien, A. A.
Incremental Inference of Concrete Types, Technical
Report R-93-1829, Department of Computer Science,
University of Illinois Urbana-Champaign, 1993.

[Sanella et al. 1993] Sannella, M., Maloney, J., Freeman-
Benson, B., Borning, A. Multi-way versus One-way
Constraints in User Interfaces: Experience with the
DeltaBlue Algorithm. Software - Practice and
Experience 23 (5), pages 529-566, 1993.

[Srivastava 1992] Srivastava, A. Unreachable Procedures
in Object-Oriented Programming. ACM Letters on
Programming Languages and Systems 1 (4) (Dec.
1992), pages 355-364.

[Ungar & Smith 1987] Ungar, D., Smith, R. Self: The
Power of Simplicity. In Proc. OOPSLA ‘87, Object-
Oriented Programming Systems, Languages and
Applications, pages 227-241, 1987. Also published in
Lisp and Symbolic Computation 4(3), Kluwer
Academic Publishers, June, 1991.

[White 1994] White, J. L., Private conversation,
February, 1994.

16

Type inf. Extraction #Objects #Slots Dumped Src Image
PrimMaker 3 min 28 sec 457 2272 155 Kb 603 Kb
deltablue 3 min 34 sec 69 455 59 Kb 366 Kb
richards 13 sec 24 sec 71 453 59 Kb 357 Kb
perm 16 sec 9 sec 58 336 48 Kb 312 Kb
towers 6 sec 9 sec 56 352 48 Kb 315 Kb
queens 9 sec 8 sec 54 340 48 Kb 315 Kb
matrix mult 17 sec 10 sec 56 356 49 Kb 338 Kb
puzzle 89 sec 16 sec 57 469 63 Kb 428 Kb
quicksort 29 sec 11 sec 55 382 51 Kb 354 Kb
bubblesort 5 sec 11 sec 56 378 50 Kb 332 Kb
treesort 15 sec 11 sec 58 392 52 Kb 361 Kb
stanford-8 3 sec 21 sec 78 605 75 Kb 521 Kb
Table 2. Summary of the extraction of PrimMaker, deltablue, richards, and the Stanford Integer Benchmarks.

Appendix A
We have extracted several applications besides
PrimitiveMaker: deltablue, a multiway constraint
solver [Sannella et al. 1993], richards, an operating
system simulation, the eight Stanford Integer
Benchmarks individually (perm, towers, queens,
matrix multiply, puzzle, quicksort, bubblesort,
treesort), and the same eight combined into a single
application (stanford-8). The original intention with
the integer benchmarks was to characterize the run-
time performance of Self [Chambers & Ungar 1991].
Our algorithm extracted all these applications
without requiring any advice or modifications to the
benchmarks or the system as a whole.

Table 2 summarizes the results of extracting
PrimitiveMaker and the eleven benchmarks from the
standard Self image. The time measurements deserve
some explanation. First, the type inference times are
showing a wide variation. This is mostly due to our
type inference algorithm being incremental:
subsequent executions of it can benefit from results
of previous executions. So, while it took 3 minutes
to infer types for deltablue, this work is helping in all
the subsequent benchmarks which are processed in a
matter of seconds typically.

Most of the extracted applications have similar sizes.
The reason is that the majority of the code extracted
is not in the application proper, but rather is “library
code” such as integers, strings, and vectors, which
they have in common. This also explains why the
sum of the sizes of the individual benchmarks is
2755 Kb whereas the size of stanford-8 is only 521
Kb.

A significant body of code that all the applications
force extraction of is the bigInt implementation. To
quantify this we repeated all the measurements,
extracting from an image without bigInts. The result
showed a fairly consistent drop in extracted image
size of roughly 100 Kbytes.

But why are bigInts extracted in the first place when
all the benchmarks work without them? The answer
is found in the type inference step. It does no range
analysis, hence must assume that integer arithmetic
can overflow. BigInts are then extracted as a result
of analyzing the Self code that handles arithmetic
overflow (the code coerces smallInts to bigInts and
retries the operation). This is an area we hope to
improve: either attempting to automatically discover
when bigInts can safely be omitted by performing
some amount of range analysis, or alternatively,
making it easy for the programmer to request that
bigInts are not extracted.

