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Abstract:

Mango is a parser generator that is included in Release 3.0 of the Self system. Mango goes
beyond LEX/YACC in several respects. First, Mango grammars are structured, thus easier to read
and map onto parse trees. Second, Mango parsers automatically build parse trees rather than
merely provide hooks for calling low-level reduce actions during parsing. Third, Mango automati-
cally maintains invariance of the structure of parse trees, even while grammars are transformed to
enable LR parsing. Fourth, Mango and the parsers it generates are completely integrated in the
Self object world. In particular, a parser is an object. Unlike YACC, several independent parsers
can co-exist in a single program.

We show how to generate a Mango parser and how to use it by means of an example: a simple
expression language. Furthermore, we show how to add semantic properties to the parse trees
that the Mango parser produces.

Mango is a realistic tool. A parser for full ANSI C was built with Mango.
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1  Introduction

Mango is a generator for integrated lexers and parsers in the Self system (release 3.0). In
this document we describe how to use Mango and give some design rationale. No attempt
is made to give a complete description of the inner workings of Mango. The intended
audience for this document is primarily the person who wants to use Mango to build a
parser for some application. Secondarily, the person who is designing an object-oriented
parser generator may benefit from reading the discussion sections.

We assume some familiarity with parsing terminology and technology such as is described
in the “dragon book” [1]. Experience with the use of other parser generators, e.g., LEX/
YACC [2], is also an advantage. Like YACC, Mango generates lexers and parsers that take
streams of characters as input and deliver streams of tokens or parse trees as output. Both

* The Self project began at Stanford University, but in early 1991, the project moved to its present home,
Sun Microsystems Laboratories, Inc.



3

the parsers and lexers are of the LR kind, using a choice of SLR(1), LALR(1), or LR(1)
parse tables.

Mango offers several advantages over YACC to the Self programmer.

• YACC is file-based; Mango is object-based. YACC was designed for ease of use in a
UNIX® shell or a make file; YACC processes input files to produce output files. Mango,
on the other hand, was designed to be a convenient tool for the Self programmer; Mango
itself executes in the Self world.

• YACC generates a parser that interfaces well with C or C++ code; Mango generates a
parser that is itself a Self object. Attempting to use a YACC parser in the Self environment
would require extensive use of “glue” (Self’s mechanism for calling C/C++ routines) and
translation of data structures between C and Self representations. A Mango parser, on the
other hand, is integrated within the Self world; the parser is a Self object, it executes
entirely in the Self world, it parses Self objects (e.g., strings) and produces parse trees that
are Self objects.

• While a YACC parser can be tailored to do complex things by inserting appropriate
parsing actions, writing such actions is often tedious since their execution order is fixed by
the order that a bottom-up parser performs reductions. In contrast, Mango parsers provide
a higher level abstraction; they produce parse trees which can be decorated with attributes
after the parsing is completed. Hence nodes can be visited in any order desired, including
top-down.

• YACC grammars are powerful and flexible because they are unstructured, but the struc-
tured grammars of Mango are often easier to read and debug, and also impose structure on
the parse trees that the parsers produce. On the negative side, it may be harder to write
structured grammars that do not lead to conflicts in the resulting parse tables; more on this
can be found in Section 2.

Simply by being object-oriented, Mango has addressed a major weakness of YACC.
Mango parsers are reified as first class objects. Thus, once the first parser for a given lan-
guage has been constructed with Mango, additional independent parsers can be obtained
in an instant by cloning. Unlike Mango, YACC does not support multiple independent
parsers in the same program.

Mango is based on structured grammars, a variant of context-free grammars. Structured
grammars are described in Section 2. The description is not specific to Mango. Section 3
illustrates how to use Mango to build a parser for a simple language of arithmetic expres-
sions. Use of the parser is also demonstrated. The parse trees produced by Mango parsers
are described in Section 4. Section 5 describes how keywords such as THEN and PROCE-
DURE in Pascal are recognized by a Mango parser. Section 6 introduces a Mango parser
for ANSI C [3]. This parser can be used as a skeleton for implementing grammar-based
tools for ANSI C. It also constitutes a large concrete example for study. Section 7 gives an
overview of the files that implement Mango. Section 8 outlines possible future work, and
finally Section 9 offers some conclusions.
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2  Structured Grammars

Mango is based on structured grammars, which are a variant of context-free grammars. A
structured context-free grammar (structured CFG) is a grammar for which:

• each nonterminal has exactly one production, and

• each production is structured.

A structured production is a production that has one of the following five forms (through-
out this document, A is a nonterminal; E, S, and Xi are terminals or nonterminals):

• Construction: A ::= X1 X2 ... Xn

“The nonterminal A derives the sequence X1 X2 ... Xn.”

• Alternation: A ::| X1 X2 ... Xn

“The nonterminal A derives one of X1, X2, ..., Xn.”

• Non-empty list: A ::+ E S

“The nonterminal A derives a non-empty sequence of the form
ESES...ESE.” We refer to E as the element and S as the separator of the
list derived by A. The separator is optional. If it is left out, A derives
EE...E.

• Possibly-empty list: A ::* E S

“The nonterminal A derives a possibly empty sequence of the form
ESES...ESE.” In other words, A ::* E S either derives ! or something
that is also derived by A ::+ E S. The separator is again optional.

• Optional: A ::? E

“The nonterminal A derives E or !.”

The concept of structured grammars is described in detail in An Object-Oriented Metapro-
gramming System [5]. Structured grammars, in fact, are the basis of the Mjølner program-
ming environment [4].

The semantics of structured productions may be precisely defined in terms of equivalent
unstructured productions. Table 1 shows the expansions used by Mango. If a list produc-
tion has no separator, simply leave out the separator from the expansion given in the table.
For the list productions, it may seem that simpler expansions would suffice. This is correct
in principle; however, Mango needs the extra level of indirection provided by A’ in order
to correctly terminate list nodes when building parse trees.

Mango generates a parser from a structured grammar in two steps. First, it expands the
structured grammar into an unstructured grammar. The structured and unstructured gram-
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mars both define the same language. Second, Mango uses standard techniques to generate
a parser from the unstructured grammar [1].

2.1  Structured vs. unstructured grammars

Structured grammars are often easier to read than unstructured grammars, because com-
mon idioms such as lists and optionals are expressed directly using an easily recognized
syntax. For example, with an unstructured grammar, the reader has to look for cycles
involving a given nonterminal to determine whether it derives a list. In contrast, there is a
single structured production that captures the list concept. Another factor improving legi-
bility is that each nonterminal has exactly one production in a structured grammar.

A disadvantage of structured grammars is that they tend to be verbose, since it is necessary
to name “intermediate” nonterminals that are often implicit in unstructured grammars. For
example, the unstructured productions

A " UX | UY

have the following equivalent structured productions
A ::| A1 A2
A1 ::= UX
A2 ::= UY.

Giving explicit names (A1, A2) to the alternatives (UX, UY) may improve legibility if the
names are well chosen, but more importantly, the names can be used to define the interface
to parse trees nodes, allowing these to be understood entirely in terms of the structured
grammar (see Section 4).

While it is important that a grammar is easy to read, it is equally important that a parser
can be effectively derived from it. Here structured grammars a priori stand at a disadvan-
tage compared with unstructured grammars. If the expansion of the structured grammar
yields an unstructured grammar that is not LR(1), the grammar writer must address the
problem indirectly, at the structured level. To do this effectively, he must have some
understanding of the relationship between the structured and unstructured grammar. A
good analogy is the difference between working in Pascal and machine code: the Pascal
programmer has given up the total control of which machine instructions are executed, but
in return he has gained the ability solve the problem at a higher abstraction level than the
machine code programmer. While it would be desirable to hide the existence of the inter-

Structured production Equivalent unstructured productions
A ::= X1 X2 ... Xn A" X1 X2 ... Xn

A ::| X1 X2 ... Xn A" X1 | X2 | ... | Xn

A ::+ E S A" A’, A’" E | A’ S E

A ::* E S A" A’, A’" A’’ | !, A’’" E | A’’ S E

A ::? E A" E | !

Table 1. Structured productions and their expansion into unstructured productions.
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mediate unstructured grammar from the user of Mango, we have not taken this step,
mostly due to lack of time.

James Roskind’s C and C++ grammars [6] are good examples of how the low-level nature
of unstructured grammars may be exploited. He has written unstructured grammars that
are well suited for LALR(1) parsing in the sense that there are few conflicts in the parse
tables. There is a price, however: his grammars are hard to read and extend with semantic
actions. In order to eliminate conflicts, Roskind had to do massive inline expansion of
nonterminals, resulting in grammars that are not highly factored, have multiple occur-
rences of several patterns, and have many right hand sides (such as UX and UY above)
whose meaning in terms of the parsed language is not obvious (they do not directly corre-
spond to concepts that the typical C or C++ programmer recognizes).

2.2  Transformations

Simply expanding each production of a structured grammar may yield an unstructured
grammar that is not well suited for LR parsing. For example, the expansion of perhaps-
empty list productions and optional productions introduce !-productions into the unstruc-
tured grammar. When there are many !-productions in a grammar, conflicts often show up
in the parse tables.

To counter these problems, Mango offers a set of transformations that can be applied to
the unstructured grammar to eliminate certain production patterns that often lead to con-
flicts. Transformations in Mango are both language and structure preserving: applying a
transformation to a grammar does not change the language that the grammar defines, and
it does not change the structure of the parse trees that the resulting parser produces.
Another way of saying this is that transformations have one effect only: making it more
“likely” that a grammar is LR(1) (or LALR(1)/SLR(1)) by eliminating certain production
patterns that often imply conflicts.

Structure preservation is crucial because it allows the programmer to fully understand
parse trees in terms of the source grammar. It also relieves the programmer from a poten-
tially significant burden when he starts adding semantic actions to the parse trees: he can
write the actions in terms of the untransformed, well-structured grammar, and rest assured
that their effect remains as he expects, despite the transformations applied to the grammar.

In contrast, the hand-inlining that Roskind did to make his C and C++ grammars YACC-
able, cannot be ignored, because the programmer using these grammars will have to rec-
ognize “related” productions and give them suitably “related,” but probably not identical,
parse actions.

We illustrate the effect of transformations with a concrete example in Section 2.2.1. Sec-
tion 2.2.2 gives a detailed description of the transformations supported by Mango and
offers some guidelines in choosing which ones to apply.
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2.2.1  How transformations help grammars become LR(1)

To illustrate the effect of transformations, consider this structured grammar:

<start> ::|  <alt1> <alt2> ;
<alt1> ::=  <d0> <c0> <d0> 'a' ;
<alt2> ::=  <d0>      <d0> 'b' ;
<c0> ::?  'c' ;
<d0> ::=  'd' ;

Expanding it to an unstructured grammar according to Table 1 and computing the LR(1)
parse table, one shift/reduce conflict will be encountered. The reason is intuitively that an
LR parser does not have enough information to choose between <alt1> and <alt2>
(this choice is forced to occur early because of the <c0> in the right hand side of <alt1>;
the <d0> on the other hand makes the parser see the same lookahead in the two cases it is
trying to choose between). The expansion of these structured productions, using the equiv-
alences given in Table 1, is the following unstructured productions:

<start>" <alt1> | <alt2> ;
<alt1> " <d0> <c0> <d0> 'a' ;
<alt2> " <d0> <d0> 'b' ;
<c0> " 'c' | ! ;
<d0> " 'd' ;

In a Mango grammar, the line

Transformations: 'elimEpsilons';

directs Mango to post-process the unstructured grammar to eliminate !-productions. The
result in the concrete case is the following unstructured productions:

<start>" <alt1> | <alt2> ;
<alt1> " <d0> 'c' <d0> 'a' | <d0> <d0> 'a' ;
<alt2> " <d0> <d0> 'b' ;
<d0> " 'd' ;

This set of productions has no LR(1)-conflicts, intuitively because the choice between
<alt1> and <alt2> is made at a time when the parser has enough information available.

2.2.2  Transformations supported by Mango

The situation illustrated by the example in the previous section is typical for the unstruc-
tured grammars resulting from expanding structured grammars. To handle this situation
and several similar ones, a set of transformations can be requested of Mango. The trans-
formations direct Mango to inline certain nonterminals in the unstructured grammars that
are results of the straightforward expansion of structured grammars. Distinct sets of trans-
formations can be applied to the syntactical and lexical parts.

The two most important transformations that Mango supports are “elimEpsilons” and
“elimSingletons.” elimEpsilons remove all !-productions and elimSingletons
remove nonterminals with only a single production. When writing a grammar, we recom-
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mend applying both of these transformations since the cost is small (the parse trees remain
unchanged). If the transformations blow up the size of the grammar too much (always an
inherent danger when inlining), taking out one or both may be a worthwhile experiment,
watching out to see if this creates (additional) parse table conflicts. On the other hand, if
conflicts remain after applying both elimEpsilons and elimSingletons, some of the nonter-
minal-specific transformations described below should be tried. It is possible, of course,
that even this does not solve the problem, in which case it may be necessary to refactor the
grammar by hand.

The following is a complete list of the transformations supported and a precise description
of how they affect the unstructured grammar:

• elimEpsilons. This transformation eliminates all !-productions (except one, if
the grammar derives !) from the unstructured grammar. The elimination is done by
repeating the following until either there are no more !-productions, or there is
only one and its left hand side is the start symbol:
1. Pick a nonterminal, A, which has an !-production: A " ! | #1... #n.
2. Replace each right hand side, $A%, in which A occurs, with n+1 new right hand
sides: $%, $#1%, ..., $#n%.

A concrete example was given in Section 2.2.1.

• elimSingletons. This transformation eliminates all nonterminals that have only
a single production (in the unstructured grammar). The right hand side of the non-
terminal being eliminated is simply inlined in all places where the nonterminal
occurs on a right hand side. For example, the productions

A " DBE | FG ;
B " XY ;

will be transformed to
A " DXYE | FG;

• inline: nonterminal-name. This transformation inlines the given nonterminal at
all its uses, whether or not the nonterminal has one or several productions.

• flatten: nonterminal-name. This transformation performs a complete recursive
expansion of the named nonterminal which of course must be non-recursive, i.e.,
can only derive a finite number of terminal strings. For example, given these struc-
tured productions:

<integer> ::= <sign> <length> ;
<sign> ::| 'signed' 'unsigned' ;
<length> ::| 'short' 'int' 'long' ;
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the result of expanding and then applying flatten: integer are these unstruc-
tured productions:

<integer> " 'signed' 'short' |
'unsigned' 'short'  |
'signed' 'int' |

'unsigned' 'int' |
'signed' 'long' |

'unsigned' 'long' ;

• dontInline: nonterminal-name. This transformation prevents the named nonter-
minal from being inlined (by any of the sweeping transformations, elimSingle-
tons and elimEpsilons). This may be necessary to ensure that reductions are
performed in a certain order when the parse tree initialization methods have side
effects. (In particular, the parser for ANSI C utilizes this to ensure timely recogni-
tion of typedef’ed identifiers).

• useCharClasses. This transformation applies to the lexers only. When lexing, it
is often the case that many different input characters are treated the same way. For
example, when lexing C, whenever a 2 is allowed on input so is a 3. The size of
the lexer tables can be significantly reduced by partitioning characters into equiva-
lence classes and lexing based on the equivalence class of the input characters (this
can be done with no loss of speed). The space savings are particularly large when
working with a 16-bit character set, but even with an 8-bit character set the savings
are considerable. For example, the tables in the lexer for ANSI C have 810 states
without character classes, but only 318 states with.

The use of all these transformations is illustrated by two grammar files, stGrammar.grm
and Ansi-C.grm. These files are part of the set of files that implement Mango (an over-
view can be found in Section 7). The files are also included in the Appendix. The transfor-
mations are summarized in Table 2.

Transformation Effect Restrictions
elimEpsilons Eliminate !-productions except perhaps

one if the grammar derives !.
elimSingletons Eliminate nonterminals that have only one

production
inline: nonterminal Inline all right hand sides of nonterminal at

all occurrences of nonterminal
flatten: nonterminal Recursively expand given nonterminal Nonterminal must

be nonrecursive
dontInline: nonterminal Prevent nonterminal from being inlined by

elimEpsilons and elimSingletons

useCharClasses Use character equivalence classes (saves
space)

Only allowed in lex
part

Table 2. Summary of transformations supported by Mango.
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3  Building a Parser

This section shows how use Mango to build a parser for a language (see Figure 1 for an
overview). First, a grammar for the language must be written. Then, Mango processes the
grammar to construct a parser for the language. The parser can be used to parse strings in
the language yielding parse trees. We illustrate this three step process by example, build-
ing a parser for the language defined by the grammar shown in Figure 2. The grammar
defines arithmetic expressions consisting of integer literals, parentheses, and the standard
four arithmetic operators, “+-*/.” This grammar can also be found in the file
mangoTest.grm.

Section 3.1 describes the syntax of grammar files, then Section 3.2 shows how to process a

grammar file to obtain a parser, and finally Section 3.3 demonstrates how to use the gener-
ated parser.

3.1  Grammar file syntax

Figure 2 shows the complete grammar file for the expression language. We will explain
grammar files by referring to this example.†

† A formal and precise description of grammar files can be found in the file stGrammar.grm (see the Appen-
dix). It is a meta-grammar, i.e., the grammar for grammars, that is used for bootstrapping the parser genera-
tor.

Grammar
Mangofor

language L
Parser
for L

String in
language

L

Parse
tree

Figure 1. Mango takes grammars as input and produces parsers. The parsers, in turn, take strings as
input and produce parse trees.
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First, comments in grammar files are Pascal style, i.e., bracketed within “(*” and “*)”.
They can nest.‡ Mango grammar files consist of three parts: header, syntax, and lexical
part.

The header, which is the first two lines in Figure 2, contains two pieces of information: a
name for the grammar and the name of a file containing behavior that will be added to the
resulting parse trees.

The significance of the name is two-fold. First, Mango parsers use the name to generate
their printString to make them easily recognizable. Second, during parser generation,
Mango may produce log files that give a summary of shift/reduce and reduce/reduce con-
flicts. The log files’ names are constructed by appending -syntax-unstruct.con-
flicts and -lex.conflicts to the name of the grammar (the former log file is for
conflicts found while generating the parser; the latter is for conflicts encountered while
generating the lexer).

‡ So if you need to write a grammar for a language that allows nested comments, you can find an example to
start from in stGrammar.grm. Incidentally, the lexer can handle nested comments because Mango trans-
lates the lexical definitions into a context-free grammar, and thus uses a full LR parser to lex. In contrast,
LEX/YACC use a simple automaton to lex, hence must defer dealing with nested structures to the parsing
phase.
There is an inherent performance penalty for introducing the full generality of an LR parser at the lexical
level. The penalty stems from the requirement that the lexer finds the longest matching token. To find the
longest token, the lexer must snapshot its state whenever it “leaves” a match to look for a potential longer
match. In these situations, a Mango lexer must snapshot the equivalent of the state of a stack automaton,
whereas a LEX lexer only has to snapshot the equivalent of the state of a deterministic automaton. We esti-
mate the overall performance penalty to be approximately 30%, but thus far we have no direct measure-
ments.

Name: 'mangoTest' (* Name of this grammar. *)
Behavior: 'mangoTest.behavior.self' (* File with behavior. *)

Syntax:  SLR(1)
Transformations: 'elimEpsilons', 'elimSingletons' ;

<exp>           ::+  <term>   <addOp> ;
<term>          ::+  <factor> <mulOp> ;
<factor>        ::|  <parenthesized> {number} ;
<parenthesized> ::=  '(' <exp> ')' ;
<addOp> ::|  '+' '-' ;
<mulOp>  ::|  '*' '/' ;

Lex:  SLR(1)
Transformations: 'elimEpsilons', 'elimSingletons', 'useCharClasses';

{whitespace}    ->  [ \t\n]+ ;
{number}        ->  {digits} ('.' {digits})? ;
{digits}         =  [0-9]+ ;

Figure 2. Structured grammar for arithmetic expressions.
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The syntax part describes the syntactical structure of the language. It begins with the key-
word Syntax: followed by the kind of parse table to be used, one of: SLR(1), LALR(1),
and LR(1). Next comes an optional list of transformations (see Section 2.2). The remain-
der of the syntax part is the productions in the grammar. They must be of the five struc-
tured kinds. The first production is the start production. Nonterminals are written as a
name enclosed in “<” and “>,” for example: <exp> and <factor>. Terminals can have
two different appearances. First, {number} refers to a terminal which is defined in the
lexical part of the grammar file. Second, “'+'” (or any other string between single quotes)
denotes a literal terminal. This inline definition of terminals is particularly useful for a
succinct specification of language constructs containing keywords such as IF, THEN, and
ELSE.

The lexical part starts with the keyword Lex: followed by the parse table kind, one of:
SLR(1), LALR(1), and LR(1). Again a set of transformations may be specified (see Sec-
tion 2.2). The bulk of the lexical part consists of a set of definitions. There are two kinds of
definitions: terminal definitions and internal definitions.

Terminal definitions define terminal symbols which may be used in the syntax part to
express the syntax of the language. Terminal definitions use the binder “->” between the
defined name and the defining expression. For example:

{whitespace} -> [ \t\n]+ ;

defines that a whitespace token consists of a non-empty sequence of blank, tab, or newline
characters. Since the definition uses the binder “->” the name being defined is a terminal,
hence {whitespace} can be used in the syntax part of the grammar.

Internal name definitions define names that can be used as part of expressions in the lexer
part only. They are not visible in the syntax part of the grammar. Internal names are
defined using the binder “=.” For example:

{digits} = [0-9]+ ;

defines the internal name {digits} as a non-empty sequence of digits. The internal name
{digits} is used in the definition of the terminal {number} (see Figure 2).

In terms of a lexer/parser chain, the difference between terminals and internal names is
that the lexer may send tokens corresponding to terminals to the parser, but will never
send anything that corresponds to an internal name.
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The right hand side of both kinds of lexical definitions is a regular expression. Table 3
shows the operators that can be used. Each has its standard meaning.

The operators have priorities as indicated in the table, but parentheses can be used to
group expressions when the priorities must be resolved differently. The primary expres-
sions are: lexical names (e.g., {digits}), char sets as in LEX/YACC (e.g., [a-zA-Z];
however, that the “.” meta character is not supported in Mango), and string literals (e.g.,
'IF').

3.1.1  The whitespace filter

It is often convenient to ignore whitespace when defining the syntax of a language. The
definition of whitespace must, of course, still be specified in the lexical structure for the
language—the convenience is merely that it is not necessary to include whitespace occur-
rences in the syntactical specification. To facilitate this, Mango treats the terminal
{whitespace} specially. If this terminal is defined in the lex part, but does not appear in
the syntax grammar, it will be filtered out before the syntax parser sees the stream of
tokens. This is accomplished by inserting a filter in the stream of tokens between the lexer
and the parser:

When the filter is inserted, the parser generator will print the message, “Inserting
whitespace filter,” during generation of the parser. For example, in the expression gram-
mar, the lexical part defines {whitespace} to be any non-empty sequence of spaces,
newlines and tabs. These tokens are never seen by the parser, hence, need not complicate
the syntax grammar.

Operator Meaning Fix Arity Priority
? optional postfix unary high

+ non-empty
closure

postfix unary high

* perhaps-
empty closure

postfix unary high

(blank) concatenation infix binary medium
| alternation infix binary low

Table 3. Regular expression operators that can be used in Mango lexical definitions.

input
whitespace
filterlexer parser

output

Pipeline
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The definition of the {whitespace} is not hardwired into Mango. Instead it must be
defined like any other nonterminal. For example, in Figure 2 {whitespace} is defined as
a non-empty sequence of blank, tab, or newline. We could conceivably generalize the filter
idea by allowing tokens other than {whitespace} to be filtered out. However, we have
not found a need for this generality yet.

The filtered-out whitespace tokens are not thrown away. Instead they are stored in the pre-
ceding non-whitespace token, and can be obtained by sending whitespace to this token.
If the input to the parser has a trailing whitespace, it is stored in a special endMarker
token that is sent through the pipe when the end of the input is encountered.

3.2  Processing a grammar

We now describe how to generate a parser from a grammar. Please refer again to Figure 2.
Before working through the example, cd to the directory that contains Mango, and check
that the Self _DirPath contains “.”.

The first step is to read in the parser generator (if you already have a snapshot that includes
the parser generator, you may ignore this step):

Self 1> 'mango.self' _RunScript

This will take a few minutes. Upon completion, it will either give you an error (hopefully
not!) or inform you that the parser generator has been successfully bootstrapped. This may
be a good time to write out a snapshot. The result of the bootstrapping is a parser for struc-
tured grammars. Now use this parser to parse the grammar for our expression language
(remember, the expression grammar is found in the file mangoTest.grm):

Self 2> shell _AddSlots: (| grmParser. expParser. |)
Self 3> grmParser: mango parsers stGrammarParser copy
Self 4> grmParser parseFile: 'mangoTest.grm'
Self 5> expParser: grmParser output makeParser

Here’s an explanation of the commands issued. First (Self 2>) we add a couple of slots
to the shell for holding objects. Next (Self 3>) we store a copy of the parser for struc-
tured grammars in grmParser. Then (Self 4>) we parse the file containing the expres-
sion grammar. The result, if everything goes well, is obtained by sending output to the
grammar parser (Self 5>). In other words, grmParser output is the result of parsing
mangoTest.grm. This result is a parse tree which has special behavior added to its
nodes. One of the messages that it understands at the root node is makeParser. The result
of sending makeParser to the parse tree is a parser for the expression grammar.** We
store the resulting parser in expParser. If the parsing in step (Self 4>) fails, an error
message will be displayed, detailing the nature of the error. For example, if the error is a
syntax error on the file being parsed, the line number and column of the file will be dis-
played together with the offending token on input and a list of possible alternatives (you

** The expression grmParser output makeParser takes a little while. A couple of warnings may be
printed; don’t worry about this for now.
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can see this by temporarily introducing an error in the “mangoTest.grm” file and retrying
the command numbered 4 above).

To help debugging, there is a global slot, noiseLevel that can be set to an integer
between 0 and 3. The higher the number is, the more diagnostic messages are printed out
during generation of parsers. To set the noise level to 3, type

mixins mango tracer noiseLevel: 3.

3.3  Using a parser

In this section, we demonstrate how to use the parser we just generated. Here are some
typical commands:

Self 6> expParser
parserPipeline(charStreamer('') ->

lrParser(mangoTest-lex) ->
filter(whitespace) ->
lrParser(mangoTest-syntax-unstruct))

Self 7> expParser parseString: '3 + 4 * 8'
parserPipeline(...)
Self 8> expParser output
exp_node
Self 9> expParser output eval
35

The first command (Self 6>) simply shows the printString of the generated parser. It
is a pipeline with four stages:

• The first stage is a character streamer that is responsible for receiving input to
parse. A parser pipeline can either parse a file (when sent the message parse-
File:) or a string (when sent the message parseString:, see command 7).

• The second stage is the lexer. It collects individual characters received from the
character streamer into tokens. For example 234 would be a token. The lexer is
itself an LR parser.

• The third stage is the aforementioned whitespace filter (see Section 3.1.1). It
eliminates {whitespace} tokens from the token stream produced by the lexer,
but lets all other tokens pass through to the parser.

• The fourth stage is what is normally referred to as simply “the parser.” It is an
LR parser. It receives a stream of tokens from the whitespace filter. It will execute
until it has received enough tokens to produce a single item of output which will be
a parse tree.

Returning to the Self commands in the code above, in (Self 8>) the result of parsing the
string '3 + 4 * 8' is retrieved by sending output to the pipeline. The result is a single
parse tree node of type exp_node which matches our expectations since the start symbol
in the grammar is <exp>. If the input stream has enough symbols on it to produce more
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than one output item, the next output item will be presented on the output when the pipe-
line receives the message skipOutput.

Finally in (Self 9>), we send eval to the exp_node. eval is a method that will evalu-
ate the expression and return its result. eval is defined in the behavior file (see Section 4.2
below).

3.3.1  Important messages that can be sent to parser pipelines

The following is a list of the most important messages that can be sent to a parser pipeline:

• copy returns a copy of the entire parser pipeline. Thus, it is easy to obtain mul-
tiple parsers for a given language once the first parser has been generated.

• parseString: parses a string. There is also a version that takes a failure
block: parseString:IfFail:.

• parseFile: parses a file. The argument is the name of the file which must
have read permission. Again, there is a version that takes a failure block: parse-
File:IfFail:.

• output returns the current output of the parser. This message is idempotent.

• skipOutput advances the parser to the next output item and returns self.

• hasMoreInput tests if there is unconsumed input on the parser pipeline.

• lastParser, firstParser return the last/first parser of the parser pipeline.
The returned parsers can be sent prevParser and nextParser.

Finally, the following messages may be useful for debugging and/or timing individual
stages of a parser pipeline:

• copySize: copies the first n stages of the parser pipeline (n, an integer, is the
argument).

• -> splices a new parser onto the end of the pipeline and returns self. Mango
uses this method internally to build the parser pipelines.

4  Parse Trees and Adding Behavior

The result of parsing a string or file is a parse tree that is obtained by sending output to
the parser pipeline. The structure of the parse tree corresponds to the grammar that the
parser was generated from. This section explains the correspondence between a grammar
and its parse trees. We first describe the parts of parse trees that are defined for any gram-
mar. Next we describe how to add grammar-specific behavior to the parse trees by specify-
ing a behavior file.
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4.1  General behavior of parse trees

Suppose a string is derived from some grammar using a certain sequence of productions.
The parse tree resulting from parsing this string is the standard derivation tree as described
in [1]. It has an interior node for each nonterminal expanded in the derivation and a leaf
node for each terminal in the string. The root of the parse tree will correspond to the first
production used (the start production). For example, the parse tree corresponding to the
derivation of 2 + 3 from the grammar in Figure 2 will have this form (ignoring the inner
structure for simplicity):

It is preferable to be able to understand what the interface of a parse tree node is by simply
looking at the grammar. This can easily be accomplished with structured grammars. In the
next section we describe how the interface of nonterminal nodes is determined, Section
4.1.2 describes the interface for terminal nodes, and finally Section 4.1.3 describes the
interface that is common for both nonterminal and terminal nodes.

4.1.1 The interface of nonterminal nodes

With Mango, a node corresponding to a nonterminal will have an interface that is deter-
mined entirely by the nonterminal’s production. This direct relation is ensured by having a
parse tree node type corresponding to each nonterminal. A node corresponding to a non-
terminal A is denoted an A-node. A node type, as is customary in Self, is implemented by a
pair of objects: a traits and a prototype. We will, however, omit the traits/prototype distinc-
tion from the figures we give below, to ensure greater clarity.

The interface of A-nodes is defined by the format of A’s structured production. There are
five cases, depending on the kind of structured production that A has:

• Alternation. If the nonterminal A has the production

A ::| X1 X2 ... Xn ;

the effect is that the A-node will be an abstract supertype for the X1-, ...,
Xn-nodes (“X1 is an A, X2 is an A, ..., Xn is an A”):
The supertype relations are realized by copy-down inheritance, i.e., each
Xi-traits has a parent pointer referring to the A-traits and the slots in the A-
prototype are copied down into each Xi-prototype. For a concrete example,

exp_node

2 + 3
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consider the node types that result from the grammar in Figure 2: factor-
node is an abstract supertype of parenthesized-node and number-
node.

If a symbol Xi occurs on the right hand side of several alternations, the cor-
responding node will have several supertypes (using Self’s multiple inher-
itance).

• Construction. Suppose A has the production
A ::= X1 X2 ... Xn ;

then the A-nodes (the instances) in the parse tree will have slots named X1,
X2, ..., Xn (“A is composed of X1, X2, ..., Xn”):

Returning to the expression grammar example, a parenthesized-node
has three slots, corresponding to “(,” {number}, and “)” respectively.
If some symbol kind, such as “(” is not a legal slot name in Self, a legal
slot name will be automatically derived from it; in this case the derived slot
name is beginParen_. To find out what a given string is mapped to, type
mango symbols symbol asSlotName: 'some-string'.

• List productions. If A’s production is one of

A ::+ E S ;
A ::+ E ;
A ::* E S ;
A ::* E ;

the A-nodes are list nodes. A list node understands the message
has_separator (returning true for the first and third productions above
and false for the second and fourth productions). All lists nodes respond to
the message elements by returning a vector of the elements in the list; the
elements will be E-nodes, of course. If the list has separators, the message

A

X2X1 Xn
. . .

A-node
X1
X2
...
Xn

X1-node

X2-node

Xn-node
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separators will return a vector of the separators which will be one
shorter than the list of elements (except if the vector of elements is empty
in which case the separators will also be empty).

• Optional. If the A production has the form
A ::? E ;

the A-nodes will understand opt_is_present. The result will be true if
the E-node is present, false otherwise. If the E-node is present, it can be
obtained by sending E to the A-node, just as for a construction production
with a single symbol on the right hand side.

4.1.2  The interface of terminal nodes

Terminal nodes form the leaves of parse trees. They can be sent the message token to
obtain the token object produced by the lexer. This token object can in turn be sent
source which returns the source string that was consumed by the lexer when the token
was produced. The token object can also be sent whitespace which will return the
whitespace token immediately following the receiver token (if the whitespace filter was
used).

4.1.3  Common interface for terminal and nonterminal nodes

It is possible to determine the type of a node by sending it messages of the form is_kind
where kind is the name of a grammar symbol. The return value is a boolean. For example,
in the expression grammar introduced in Section 3, sending is_exp to the root node
returns true:

Self 10> expParser output is_exp
true

Another group of messages implement iterators on parse trees. First, all nodes respond to
the message children_do: by iterating the (block) argument over their direct children.
List nodes, for example, will iterate over their elements and separators. Second, the mes-
sages suffix_walk_do: and prefix_walk_do: will iterate over entire subtrees (or
trees, if the receiver is the root node).

4.1.4  Tags

Sometimes the default way of naming slots in parse tree nodes can fail. Tags can solve this
problem by allowing the programmer to override the default names. Tags can also be used
to give more meaningful or specific names to slots in parse tree nodes.

For example, suppose you are writing a grammar for Pascal. The production defining IF
statements may look like this:

<if_stmt> ::= 'IF' <exp> 'THEN' <stmt>
'ELSE' <stmt> ;
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Given an if_stmt-node, the problem with this definition is that there would be no way to
distinguish the statements in the THEN part and the ELSE part: the two slots would have
the same name. Using tags, different names can be assigned to occurrences of the same
nonterminal. A better way to write the production for <if_stmt> is:

<if_stmt> ::= 'IF' <exp> 'THEN' <then_stmt:stmt>
'ELSE' <else_stmt:stmt>;

The tags, then_stmt and else_stmt, override the default slot names for if_stmt-
nodes; thus, the two occurrences of the <stmt> nonterminal can be readily distinguished.

In general, a tagged nonterminal is written as <tag:kind>. The purpose of tags is to
guarantee uniqueness of names in the public interface of parse tree nodes. When tags are
present they will be used as the name of the corresponding slot in parse tree nodes. If tags
are omitted they default to the “kind” of the grammar symbol. For example, <stmt> is
equivalent to <stmt:stmt>. Any string of printable characters may be used as a tag, but
if the string does not constitute a legal Self slot name a legal slot name will be derived and
used instead (see Section 4.1.1). Tags containing the substring internal0000 are
reserved.

Terminals may also be tagged. A tagged terminal is written as {tag:kind}. Literals,
however cannot be tagged; if you need to tag a literal in the syntax part, you must first pro-
mote the literal to be a nonliteral terminal, i.e., defined in the lex part, and then tag the rel-
evant instances in the syntax part.

4.2  Adding behavior to parse trees

Parse trees themselves are rarely the final goal when a parser is used. Rather, they provide
a structured foundation on which domain-specific behavior is built (such as, for example,
a type checker and a code generator if the parser is part of a compiler).

Behavior can be added to Mango parser trees by means of a “behavior file.” Mango will
process this file during parser generation and ensure that the prototype parse tree nodes
possess the behavior. Again, we illustrate this by referring to the expression grammar in
Figure 2. The behavior file that is specified in the header of the grammar is
mangoTest.behavior.self. Its contents are shown in Figure 3. It may not best dem-
onstrate the Self programming style; however, we have tried to keep everything as
straightforward as possible (rather than striving for the most elegant solution).

To understand the behavior file, observe that it describes a single Self object, the behavior
object. The behavior object has a number of slots whose names are all also the names of
symbols in the grammar (except for the parent slot which is there to make the object
“well behaved”). For example, the behavior object in Figure 3 has a slot named exp. This
slot contains the behavior that is added to the traits object of exp-nodes. It is also possible
to add behavior to the prototype object of a parse tree node. This is done by specifying a
slot with a name such as exp_node_proto. In the figure we have done this for illustra-
tion purposes only: the behavior added to the prototype of exp-nodes is never used.
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In general, suppose the grammar contains a symbol X. The behavior that will be added to
the traits object of X-nodes is found in the X slot in the behavior object. Similarly, the
behavior that will be added to the prototype X-node object is found in the X_proto slot in
the behavior object. One or both of X and X_proto may be omitted from the behavior
object, in which case no behavior is added to the corresponding parse tree nodes.

The naming, X vs. X_proto reflects the fact that it is most common to add behavior to
traits nodes. Slots added to the prototype parse tree nodes will be copied down into sub-
types in accordance with the hierarchy specified by the alternation productions. Typically,
state is added to the prototype nodes, and methods are added to the traits nodes.

Figure 3. The behavior file that corresponds to the grammar in Figure 2.

( |
_ parent* = traits oddball.

^ exp = ( |
^ eval = ( | s. |

s: elements first eval.
separators do: [|:sep. :idx|

s: (sep performOpOn: s And: (elements at: 1+idx) eval).
].
s.

).
| ).

^ exp_proto = (|
^ thisSlotIsIgnored.

| ).

^ term = (
^ eval = ( | s. |

s: elements first eval.
separators do: [|:sep. :idx|

s: (sep performOpOn: s And: (elements at: 1+idx) eval).
].
s.

).
| ).

^ parenthesized = (| ^ eval = ( exp eval. ). |).
^ number = (| ^ eval = ( token source eval. ). |).
^ plus_ = (| ^ performOpOn: x And: y = ( x + y. ). |).
^ minus_ = (| ^ performOpOn: x And: y = ( x - y. ). |).
^ star_ = (| ^ performOpOn: x And: y = ( x * y. ). |)
^ slash_ = (| ^ performOpOn: x And: y = ( x / y. ). |).

| )
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The behavior for the expression grammar is quite simple since its only purpose is to eval-
uate the parsed expression. For example, the nodes corresponding to the operators “+-*/”
simply define a message that performs the relevant operation (note how, e.g., the terminal
kind “+” is mapped to the Self slot name plus_). The operator nodes are invoked by the
exp and term nodes that simply send eval to the arguments and then perform the rele-
vant binary operation on the results of the evals.

Two optional slot names in the behavior object have special meanings. The slot name
shared_behavior contains behavior that will be added to a common supertype of all
node types in the given grammar. In other words, if a message is defined in the
shared_behavior slot, it will be understood by every parse tree node, no matter what
its type is. In the same way, the slot shared_behavior_proto describes behavior that
is copied down into every concrete parse tree node type.

For an extensive example of how to add behavior to grammars, please refer to the file
stGrammar.behavior.self. It is a companion file to the meta-grammar file stGram-
mar.grm and contains behavior that builds a parser from a parse tree of a grammar.

5  Keyword Recognizer

Suppose you are parsing Pascal. In Pascal an identifier has the following lexical character-
ization: [A-Za-z]+[_A-Za-z0-9]*. However, Pascal also contains numerous key-
words that should preferably be tokenized to a token other than “identifier” in order to
make parsing easier. (If a keyword such as THEN was lexed as “identifier,” you might end
up with a parser that accepts statements such as

THEN := 9;

IF x = y BLIP x := 9;

and would need a potentially complicated checker to catch such errors in a phase after
parsing). A much more elegant solution is to provide a convenient way for tokens such as
THEN and IF to be presented to the parser as something other than “identifier.”

The keyword recognizer accomplishes this very thing. It is a simple kind of parser or filter
that is inserted between the whitespace filter and the syntax parser. It is not always needed
(when it is not needed, Mango avoids inserting it; for example, it is not needed in the
expression grammar example).

input whitespace
filterlexer parser

output

Pipeline

keyword
recognizer
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The keyword recognizer has a set of those literals occurring in the grammar that also
match the definition of some terminal (such as THEN in a Pascal grammar). The keyword
recognizer works by simply watching the stream of tokens flowing from the lexer to the
parser, changing the type of the tokens which are in its set of literals to the types of the
corresponding literals.

6  The C Parser

The file Ansi-C.grm (see the Appendix) and an accompanying behavior file, Ansi-
C.behavior.self, implement a parser for ANSI C. The parser is based on the grammar
found in the book by Kernighan and Ritchie [3]. The grammar in the book is unstructured;
the grammar in Ansi-C.grm is a structured version of it. There is currently no behavior
added to the grammar (except what is needed for parsing, as described below). Adding
behavior to this grammar would be a quick way to get started writing grammar-based C
tools.

The structured and unstructured ANSI C grammars are similar (although there is one
exception which is explained below). For example, in [3] the unstructured productions for
expressions include:

<exclusive_OR_exp> " <AND_exp> |
<exclusive_OR_exp> '^' <AND_exp> ;

<AND_exp> " <equality_exp> |
<AND_exp> '&' <equality_exp> ;

<equality_exp> " <relational_exp> |
<equality_exp> '==' <relational_exp> |
<equality_exp> '!=' <relational_exp> ;

<relational_exp> " <shift_exp> |
<relational_exp> '<' <shift_exp> |
<relational_exp> '>' <shift_exp> |
<relational_exp> '<=' <shift_exp> |
<relational_exp> '>=' <shift_exp> ;

And the corresponding structured productions in the Mango grammar are:

<exclusive_OR_exp> ::+ <AND_exp> '^' ;
<AND_exp> ::+ <equality_exp> '&' ;
<equality_exp> ::+ <relational_exp> <eq_op> ;
<relational_exp> ::+ <shift_exp> <rel_op> ;

<eq_op> ::| '=='  '!='  ;
<rel_op> ::| '<'   '>'   '<='  '>='  ;

The productions for the <type_specifier>, <type_qualifier>, and
<storage_class> nonterminals (not shown here, but they can be found in the Appen-
dix) differ significantly between the unstructured and structured grammar. This is not just
due to the difference between unstructured and structured grammars. For example, the
unstructured grammar derives the string float int x; which is not correct C since
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there are two type names in the declaration. The structured grammar enforces that declara-
tions can have at most one type name (it is correct C to have no type name in a declaration,
since int is implied). Because the structured grammar is more restrictive, certain errors
can be caught during parsing rather than being postponed to a later semantic checking
phase. The rewriting also helps limit ambiguities in the grammar.

To build the C parser, simply read the file genansi.self into a Self image containing
Mango. The result is that several slots are added to the shell. Among the slots is a data
slot, cParser, that will be initialized to contain the generated parser for C. There is also a
method that will invoke the standard UNIX preprocessor. For example, you can type the
following:

Self 12> 'genansi.self' _RunScript
... lots of output ...
Self 13> ppAndParser: '/usr/include/stdio.h'
Preprocessing file '/usr/include/stdio.h'... done.
Parsing... done.
<shell>
Self 14> cParser output
translation_unit_node
Self 15> [|a<-0|

cParser output suffix_walk_do: [a: a+1].
a print. ' nodes.' printLine] value

455 nodes.
Self 16> cParser output fullSource
... the contents of the file “/usr/include/stdio.h”.

At a later date, it is possible that a C pre-processor written in Self will be integrated with
the Mango C parser. Until then we will rely on the crude way of invoking the UNIX C pre-
processor.

6.1  Resolving the typedef ambiguity

The C grammar contains a well-known ambiguity that must be resolved in order to parse
successfully. The ambiguity has to do with the use of identifiers as type names after they
have been typedef’ed.

The Mango C parser resolves the ambiguity by providing context dependent information
when it is needed. This is done by splitting the terminal kind {identifier} into two:
{identifier} and {typedef_name}. Selected {identifier} tokens are modified
by a filter that is inserted between the lexer and parser in the pipeline. The filter is analo-
gous to the keywordFilter described in Section 5. It is called a typedefFilter. It
looks at all the tokens produced by the lexer. The default behavior is to pass the tokens
onto the parser unchanged. However, if the token has kind {identifier}, and the par-
ticular instance has a name that matches a name that has previously been typedef’ed, the
kind of the token is changed from {identifier} to {typedef_name}.

The typedefFilter must maintain a set of names that have been typedef’ed in the
current context. Since C allows typedef’ed names to be re-declared as non-typedef
things in inner scopes, the typedefFilter must be informed whenever a scope is
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entered or left. To do this, and to register when identifiers are typedef’ed, the parser
must feed information back through the pipeline to the typedefFilter. The most criti-
cal, and hardest to implement part of this is that the feedback must take place during pars-
ing to continuously keep the typedefFilter up to date; else the parser may go wrong
because it bases its actions on information provided by the typedefFilter.

The feedback from the parser is implemented by methods called initialize_node: in
the behavior for selected nonterminals. These methods are invoked whenever a parse tree
node is created, i.e., during parsing (this is akin to YACC’s low-level way of allowing the
user to insert actions that are executed during parsing). The initialize_node: meth-
ods are invoked in the order that parse tree nodes are created. This order depends to some
degree on whether nonterminals are inlined or not. In the C parser, it is crucial that the
feedback to the typedefFilter arrives early, so we need precise control over which
nonterminals are inlined. To express this, Mango has a special transformation, dontIn-
line:, which is used to prohibit inlining of a nonterminal. The C grammar file contains
several uses of it.

The inclusion of the typedefFilter in the parser pipeline is controlled by the presence
of an option, typedefKludge (see the header of the file Ansi-C.grm). This option is
supported by Mango solely for the purpose of parsing C.

input whitespace
filterlexer parser

output

Pipeline

keyword
recognizer

typedef
filter
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7  Files

Table 4 gives a brief overview of the files that make up Mango. For each file, we give a
high-level description of what the file implements.

8  Future Work
Putting Mango into frequent use will doubtless identify several areas that need improve-
ments or enhancements. Some areas where changes may be needed have already been

File Name What the file implements
mango.self Reading in this file pulls in the entire parser generator and bootstraps it.

Aside from reading in the other Mango files, this file creates a number
of initialized name spaces.

grammar.self This file defines unstructured grammars, terminals, nonterminals, pro-
ductions, LR parse tables, and transformations.

stGrammar.self This file defines structured grammars, productions, their expansion into
unstructured grammars, and controls the creation of parse tree nodes.

gramBuild.self This file contains an ad-hoc lexer and parser for grammar files. It is
only used to bootstrap Mango.

parsers.self Filters, LR parsers, and parser pipelines are defined here.

prodSet.self Defines a prodSet which maintains a set of productions in a representa-
tion that supports efficiently performing transformations.

ptokens.self Defines tokens that are passed between the lexers and parsers. It also
defines the roots for parse tree nodes.

treeBuilders.self This file implements a specialized “code generator” that generates the
Self code that builds parse trees during parsing.

typedefFilter.self This is a hack needed to parse C and possibly C++.
stGrammar.grm The meta grammar or grammar for grammars. It is parsed during boot-

strapping. This file is included in the appendix.
stGrammar.
behavior.self

This file contains the behavior that is added to parse trees for gram-
mars, allowing a parser pipeline to be constructed. It also defines how
the regular expressions in the lex part are expanded into a context free
grammar.

mangoTest.grm This is the example grammar for expressions used in this manual (see
Figure 2).

mangoTest.behavior.
self

The behavior file for mangoTest.grm that allows expressions to be
evaluated (see Figure 3).

Ansi-C.grm The structured grammar for ANSI C. This file is included in the Appen-
dix.

Ansi-C.behavior.
self

The minimal behavior file for the C grammar. It implements the feed-
back of typedef information to the typedefFilter. This file is
included in the Appendix.

Table 4. Overview of the files that make up Mango.
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identified. We list them here so that the reader may be aware that future versions of Mango
may differ.

The expansion of structured grammars into unstructured grammars should be hidden to a
greater extent. Among other things, hiding the expansion requires re-phrasing any parse
table conflicts in terms of the structured grammar. Along the same lines, it would be pref-
erable to have Mango automatically apply transformations as needed, rather than impos-
ing the task upon the user.

The two-object (traits + prototype) implementation of tree nodes may be replaced with a
single-object implementation. A default rule, stating that assignable slots are copied down
and constant slots are inherited through a parent pointer, would probably handle virtually
all cases correctly. This change would make the terminology for and use of semantic rou-
tines more lightweight.

A preprocessor for C has been written in Self. It should be integrated with the Mango C
parser so that the crude invocation of the UNIX preprocessor is avoided.

9  Conclusions

Mango is an integrated LR(1) parser generator written in Self. It offers several powerful
features that a Self programmer can benefit from if he/she needs to construct a parser. The
areas in which Mango goes beyond a traditional parser generator such as YACC include:
Mango is object-oriented, Mango grammars are structured, and Mango parsers produce
parse trees whose nodes are arranged in a subtype hierarchy according to the grammar
they are derived. The parse trees provide a structured foundation for defining semantic
routines that can implement, e.g., type checking or code generation if the parser is part of
a compiler. Mango does not only support adding methods to parse tree nodes; slots for
holding state and parents for inheriting additional behavior can also be added. This level
of expressive power can make it significantly easier to implement complex semantic rou-
tines than if the programmer is restricted to using actions that are invoked during parsing
such as YACC insists.

A parser for full ANSI C has been constructed with Mango. C is not an easy language to
parse since it has a large grammar and an ambiguity involving typedef’s that must be
resolved with context dependent information. The ability to cope with C demonstrates
clearly that Mango is a robust tool.

The C parser is interesting on its own since it gives the “full” picture of the C syntax. Spe-
cifically, we started with the C grammar in the standard C reference [3], but had to address
two major issues before we had a satisfactory parser. First, we restructured the grammar to
correct a deficiency that would otherwise allow illegal C type declarations with multiple
type names to be derived. Second, we resolved the typedef ambiguity by timely supply-
ing context dependent information to the parser. The restructured grammar and the Self
code that collects the context dependent information is given in the appendix. Neither of
these issues are addressed in Kernighan and Ritchie’s The C Programming Language [3].
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Appendix A

The following are February 1994 versions of stGrammar.grm (the meta grammar or
grammar for grammars), Ansi-C.grm (grammar for ANSI C, see Section 6), and Ansi-
C.behavior.self (behavior file for C grammar, see Section 6).

stGrammar.grm
(* Sun-$Revision: 9.3 $ *)

(* Copyright 1992 Sun Microsystems, Inc. and Stanford University.
   See the LICENSE file for license information. *)

(* This (structured) grammar describes a representation for structured
   grammars. *)

Name:     'stGrammar'
Behavior: 'stGrammar.behavior.self'

Syntax:  SLR(1)
Transformations: 'elimEpsilons', 'elimSingletons' ;

  <start>          ::=  'Name:'       {name:string}
                        'Behavior:'   {behaviorFile:string}
                        <optionsPartOpt>
                        <syntaxPart>  <lexPart>                             ;

  <optionsPartOpt> ::?  <optionsPart>                                       ;
  <optionsPart>    ::=  'Options:' <options> ';'                            ;
  <options>        ::+  {string} ','                                        ;

  <prologue>       ::=  <parseTableKind>  <transformsOpt>                   ;
  <parseTableKind> ::|  'SLR(1)'  'LALR(1)'  'LR(1)'                        ;
  <transformsOpt>  ::?  <transforms>                                        ;
  <transforms>     ::=  'Transformations:'  <transNames>  ';'               ;
  <transNames>     ::+  <transName> ','                                     ;
  <transName>      ::=  {trans:string}                                      ;

  <syntaxPart>     ::=  'Syntax:'  <prologue>  <productions>                ;

  <productions>    ::*  <production0>                                       ;
  <production0>    ::=  <production>  ';'                                   ;

  <production>     ::|  <alternation> <construction>
                        <lst0> <lst1> <optional>                            ;

  <alternation>    ::=  <lhs:nonterminal> '::|' <alternatives>              ;
  <construction>   ::=  <lhs:nonterminal> '::=' <symbols>                   ;
  <lst0>           ::=  <lhs:nonterminal> '::*' <elm:symbol> <sep:symOpt>   ;
  <lst1>           ::=  <lhs:nonterminal> '::+' <elm:symbol> <sep:symOpt>   ;
  <optional>       ::=  <lhs:nonterminal> '::?' <elm:symbol>                ;

  <alternatives>   ::+  <symbol>                                            ;
  <symbols>        ::*  <symbol>                                            ;
  <symOpt>         ::?  <symbol>                                            ;
  <symbol>         ::|  <nonterminal> <terminal> <literalTerm>              ;
  <literalTerm>    ::=  {string}                                            ;
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  <terminal>       ::|  <terminalNT>    <terminalT>                         ;
  <nonterminal>    ::|  <nonterminalNT> <nonterminalT>                      ;

  <terminalNT>     ::=  '{' {kind:identifier} '}'                           ;
  <nonterminalNT>  ::=  '<' {kind:identifier} '>'                           ;
  <terminalT>      ::=  '{' {tag:identifier} ':' {kind:identifier} '}'      ;
  <nonterminalT>   ::=  '<' {tag:identifier} ':' {kind:identifier} '>'      ;

  <lexPart>        ::=  'Lex:'  <prologue>  <lexdefs>                       ;
  <lexdefs>        ::*  <lexdef>                                            ;

  <lexdef>         ::=  <regExpName> <binder> <regExp> ';'                  ;
  <binder>         ::|  <external> <internal>                               ;
  <external>       ::=  '->'                                                ;
  <internal>       ::=  '='                                                 ;

  <regExp>         ::+  <term>  '|'                                         ;
  <term>           ::*  <factor>                                            ;
  <factor>         ::=  <base> <unaryOpOpt>                                 ;
  <base>           ::|  <regExpName> <literalExp> <parenExp>                ;
  <parenExp>       ::=  '(' <regExp> ')'                                    ;
  <literalExp>     ::|  {string} {charSet}                                  ;
  <unaryOpOpt>     ::?  <unaryOp>                                           ;
  <unaryOp>        ::|  <closure0> <closure1> <lexoptional>                 ;
  <closure0>       ::=  '*'                                                 ;
  <closure1>       ::=  '+'                                                 ;
  <lexoptional>    ::=  '?'                                                 ;
  <regExpName>     ::=  <terminalNT>                                        ;

Lex:  SLR(1)
Transformations: 'elimEpsilons', 'elimSingletons', 'useCharClasses' ;

  {whitespace}         ->  {blank}+                                         ;
  {string}             ->  '\'’ {stringStuff}* '\'’                         ;
  {charSet}            ->  '[' {charSetStuff}* ']'                          ;
  {identifier}         ->  {letter} ({letterOrDigit} | '_')*                ;

  {letterOrDigit}       =  {letter} | {digit}                               ;
  {letter}              =  [A-Za-z]                                         ;
  {digit}               =  [0-9]                                            ;
  {octalDigit}          =  [0-7]                                            ;
  {hexDigit}            =  [0-9a-fA-F]                                      ;
  {blank}               =  [ \t\n] | {comment}                              ;

  {comment}             =  '(*'  {commentStuff}                             ;

  {commentStuff}        =  {notStarOrParenBegin} {commentStuff}  |
                           '('  {commentStuffHasPB}              |
                           '*'  {commentStuffHasStar}                       ;

  {commentStuffHasPB}   =  {notStarOrParenBegin} {commentStuff}  |
                           '('  {commentStuffHasPB}              |
                           '*'  {commentStuff} {commentStuff}               ;

  {commentStuffHasStar} =  {notStarOrParenEnd} {commentStuff}    |
                           '*'  {commentStuffHasStar}            |
                           ')'                                              ;
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  {stringStuff}         =  {notQuoteOrBS}  | {commonEscape}                 ;

  {charSetStuff}        =  {notEndBraceOrBS}  |
                           '\\]'  |  '\\-'  | {commonEscape}                ;

  {commonEscape}        =  '\\' {shortEscape} | '\\' {numericEscape}        ;
  {shortEscape}         =  [tbnfrva0\\'"?]                                  ;
  {numericEscape}       =  {hexEscape} | {decimalEscape} | {octalEscape}    ;
  {hexEscape}           =  'x' {hexDigit}   {hexDigit}                      ;
  {decimalEscape}       =  'd' {digit}      {digit}      {digit}            ;
  {octalEscape}         =  'o' {octalDigit} {octalDigit} {octalDigit}       ;

  {innocentChar}        =  [^*()\\\]']                                      ;
  {notQuoteOrBS}        =  {innocentChar} | [*()\]]                         ;
  {notEndBraceOrBS}     =  {innocentChar} | [*()']                          ;
  {notStarOrParenBegin} =  {innocentChar} | [)\\\]']                        ;
  {notStarOrParenEnd}   =  {innocentChar} | [(\\\]']                        ;

  (* This {innocentChar} thing is mostly just a manual refactoring to avoid
     too many productions in the lex grammar. The same thing is partially
     done automatically by specifying the 'useCharClasses' transformation,
     but doing it in the source has the advantage that the factoring is
     obvious to the reader and takes place as early as possible. *)
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Ansi-C.grm
(* Sun-$Revision: 9.3 $ *)

(* Copyright 1992 Sun Microsystems, Inc. and Stanford University.
   See the LICENSE file for license information. *)

(* This structured grammar has been obtained by "structuring" the grammar in
   the book "The C Programming Language" by Kernighan/Ritchie (ANSI version).

   The terminal and nonterminal names used in this grammar are the same as
   in the book, except for the following abbreviations:

      decl  for  declaration
      exp   for  expression
      def   for  definition

   (and perhaps a few other abbreviations that I have forgotten right now).

   The major change in the grammar, apart from using structured productions,
   is a refactoring of the type_specifier/type_qualifier/storage_class
   related productions. The refactoring expresses that there can only be
   one type name in a declaration (e.g. the ANSI grammar derives float int x;).
   The refactoring also helps control ambiguities even though some
   occurrences of {identifier} have been replaced with
   <identifier_or_typedef_name>.

   The only other thing in this grammar that is not explained in the book
   is the typedef hack. So what is this about typedef?

   The C grammar contains an ambiguity (sigh!) which can be resolved by
   providing context dependent information. The context dependent information
   is obtained by splitting the token kind 'identifier' into two: 'identifier'
   and 'typedef_name'. Next a filter is inserted between the lexer and parser.
   The filter looks at the tokens produced by the lexer. The default behavior
   is to pass the token onto the parser unchanged. However, if the token has
   kind 'identifier', and the particular instance has a name that matches a
   name that has previously been typedeffed, the kind of the token is changed
   from 'identifier' to 'typedef_name'.

   The filter, which we call typedefFilter, contains a set of names that
   have been typedeffed. Since C allows typedeffed names to be redeclared
   as non-typedef things in inner scopes the typedef filter must be informed
   whenever a scope is entered or left.

   The bad side of all this is that the typedefFilter relies heavily on
   side effects that must take place during parsing. We perform these
   side effects as a part of initializing the nodes in the parse trees.
   This means that the order that certain nodes are constructed in
   is critical. Inlining of productions changes this order so we need
   a mechanism for controlling (preventing) inlining. This is the
   'dontInline:' transformation.

   Expect 4 s/r conflicts, 4 r/r conflicts.
   Since there are r/r conflicts in this grammar, it is important that
   productions are not arbitrarily moved around (the default resolution
   rule for reduce/reduce conflicts is to reduce with the production
   occurring earlier in the grammar).
*)
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Name:     'Ansi-C'
Behavior: 'Ansi-C.behavior.self'
Options:  'typedefKludge';

Syntax: LALR(1)
Transformations: 'dontInline: start_scope',
                 'dontInline: end_scope',
                 'dontInline: core_decl',
                 'elimEpsilons',
                 'elimSingletons',
                 'flatten: real',     'inline: real',
                 'flatten: integral', 'inline: integral' ;

<translation_unit> ::+ <external_decl> ;

<external_decl> ::| <function_def> <decl> ;

<function_def> ::= <decl_specifiers_opt>
                   <declarator>
                   <decl_list_opt>
                   <compound_stmt> ;

<decl_list> ::+ <decl> ;

<decl>      ::= <core_decl> ';' ;
<core_decl> ::= <decl_specifiers> <init_declarator_list> ;

<decl_specifiers> ::| <no_sc_decl_specifiers>
                         <sc_decl_specifiers> ;

<no_sc_decl_specifiers> ::| <decl_specifiers1>
                            <decl_specifiers2>
                            <decl_specifiers3> ;

<sc_decl_specifiers>    ::| <decl_specifiers4>
                            <decl_specifiers5>
                            <decl_specifiers6>
                            <decl_specifiers7> ;

<decl_specifiers1> ::=                                   <type_specifier> ;
<decl_specifiers2> ::=                 <type_qualifier>                   ;
<decl_specifiers3> ::=                 <type_qualifier>  <type_specifier> ;
<decl_specifiers4> ::= <storage_class>                                    ;
<decl_specifiers5> ::= <storage_class>                   <type_specifier> ;
<decl_specifiers6> ::= <storage_class> <type_qualifier>                   ;
<decl_specifiers7> ::= <storage_class> <type_qualifier>  <type_specifier> ;

<storage_class>    ::| 'auto'
                       'register'
                       'static'
                       'extern'
                       'typedef' ;

<type_specifier>   ::| 'void'
                       <real>
                       <integral>
                       <struct_or_union_specifier>
                       <enum_specifier>
                       {typedef_name} ;
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<real>             ::| <float_specifier>
                       <double_specifier>
                       <long_double_specifier> ;

(* Disallows "long long double". *)
<float_specifier>       ::= 'float'  ;
<double_specifier>      ::= 'double' ;
<long_double_specifier> ::= 'long' 'double' ;

<sign_size>  ::| <sign_size1> <sign_size2> ;
<sign_size1> ::= <sign> <size_opt> ;
<sign_size2> ::= <size> <sign_opt> ;
<size>       ::| <short_size> <long_size> ;
<sign>       ::| 'signed'  'unsigned' ;

<short_size> ::= 'short' ;  (* To avoid MI. *)
<short_type> ::= 'short' ;
<long_size>  ::= 'long'  ;
<long_type>  ::= 'long'  ;

(* Disallows "long long int". *)
<integral>  ::| <integral1> <integral2> <integral3> <integral4> <integral5> ;
<integral1> ::= 'int' ;
<integral2> ::= <sign_size> 'int' ;
<integral3> ::= <int_opt> <sign_size> ;
<integral4> ::= <sign_opt> <nonsizable_integral> ;
<integral5> ::= <nonsizable_integral> <sign_opt> ;

<nonsizable_integral> ::| 'char' <short_type> <long_type> ;

<type_qualifier> ::| 'const'  'volatile' ;

<struct_or_union_specifier> ::| <su_def> <su_decl> ;

<su_def>  ::= <struct_or_union>
              <identifier_or_typedef_name_opt>
              '{' <struct_decl_list> '}' ;

<identifier_or_typedef_name> ::| <identifier2> <typedef_name2> ;

<typedef_name2> ::= {name:typedef_name} ;  (* To avoid MI. *)
<identifier2>   ::= {name:identifier} ;

<su_decl>          ::= <struct_or_union> <identifier_or_typedef_name> ;
<struct_or_union>  ::| 'struct'  'union' ;
<struct_decl_list> ::+ <struct_decl> ;

<int_opt>                        ::? 'int'                        ;
<sign_opt>                       ::? <sign>                       ;
<size_opt>                       ::? <size>                       ;
<decl_specifiers_opt>            ::? <decl_specifiers>            ;
<parameter_type_list_opt>        ::? <parameter_type_list>        ;
<declarator_opt>                 ::? <declarator>                 ;
<constant_exp_opt>               ::? <constant_exp>               ;
<exp_opt>                        ::? <exp>                        ;
<ellipsis_opt>                   ::? <ellipsis>                   ;
<abstract_declarator_opt>        ::? <abstract_declarator>        ;
<comma_opt>                      ::? ','                          ;
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<pointer_opt>                    ::? <pointer>                    ;
<direct_abstract_declarator_opt> ::? <direct_abstract_declarator> ;
<decl_list_opt>                  ::? <decl_list>                  ;
<enum_initializer_opt>           ::? <enum_initializer>           ;
<identifier_or_typedef_name_opt> ::? <identifier_or_typedef_name> ;

<init_declarator_list> ::* <init_declarator> ',' ;

<init_declarator> ::| <i_declarator> <declarator_and_initializer> ;

<i_declarator> ::= <declarator> ;  (* To avoid MI in grammar. *)

<declarator_and_initializer> ::=  <declarator> '=' <initializer> ;

<struct_decl> ::= <no_sc_decl_specifiers> <struct_declarator_list> ';' ;

<struct_declarator_list> ::+ <struct_declarator> ',' ;

<struct_declarator> ::| <s_declarator> <field> ;

<s_declarator> ::= <declarator> ; (* To avoid MI in grammar. *)

<field> ::= <declarator_opt> ':' <constant_exp> ;

<enum_specifier>   ::| <enum_def> <enum_decl> ;

<enum_decl>        ::= 'enum' <identifier_or_typedef_name> ;
<enum_def>         ::= 'enum' <identifier_or_typedef_name_opt>
                       '{' <enumerator_list> <comma_opt> '}' ;
(* Is <identifier_or_typedef_name> really the right thing to use above,
   or should it just be {identifier}? gcc can't really make up it's mind. *)

<enumerator_list>  ::+ <enumerator> ',' ;
<enumerator>       ::= {identifier} <enum_initializer_opt> ;
<enum_initializer> ::= '=' <constant_exp> ;

<declarator>       ::= <pointer_opt> <direct_declarator> ;

<direct_declarator> ::= <direct_declarator_part1> <direct_declarator_part2> ;

<direct_declarator_part1> ::| <declarator_identifier> <paren_declarator> ;

<declarator_identifier> ::= <id:identifier_or_typedef_name> ;

<paren_declarator> ::= '(' <declarator> ')' ;

<direct_declarator_part2> ::* <a_or_f_declarator> ;

<a_or_f_declarator> ::| <array_declarator>
                        <fct_argtype_declarator>
                        <fct_argname_declarator>  ;

<array_declarator>       ::= '[' <constant_exp_opt>    ']' ;
<fct_argtype_declarator> ::= '(' <parameter_type_list> ')' ;
<fct_argname_declarator> ::= '(' <identifier_list>     ')' ;

<pointer> ::+ <star_type_qualifier_list> ;

<star_type_qualifier_list> ::= '*' <type_qualifier_list> ;
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<type_qualifier_list> ::* <type_qualifier> ;

<parameter_type_list> ::= <parameter_list>  <ellipsis_opt> ;

<ellipsis> ::= ','  '...' ;

<parameter_list> ::+ <parameter_decl> ',' ;

<parameter_decl> ::= <decl_specifiers> <abstract_or_concrete_pd> ;

<abstract_or_concrete_pd> ::| <abstract_pd> <concrete_pd> ;

<concrete_pd> ::= <declarator> ;

<abstract_pd> ::= <abstract_declarator_opt> ;

<identifier_list> ::* {identifier} ',' ;

<initializer> ::| <simple_initializer> <compound_initializer> ;

<simple_initializer> ::= <assignment_exp> ;

<compound_initializer> ::= '{' <initializer_list> <comma_opt> '}' ;

<initializer_list> ::+ <initializer> ',' ;

<type_name> ::= <no_sc_decl_specifiers> <abstract_declarator_opt> ;

<abstract_declarator> ::| <pointer_only>
                          <pointer_opt_direct_abstract_declarator> ;

<pointer_only> ::= <pointer> ;

<pointer_opt_direct_abstract_declarator> ::= <pointer_opt>
                                             <direct_abstract_declarator> ;

<direct_abstract_declarator> ::| <paren_abstract_declarator>
                                 <other_abstract_declarator> ;

<paren_abstract_declarator> ::= '(' <abstract_declarator> ')' ;

<other_abstract_declarator> ::= <direct_abstract_declarator_opt>
                                <array_or_fct_ad> ;

<array_or_fct_ad> ::| <array_ad> <fct_ad> ;

<array_ad> ::= '[' <constant_exp_opt>        ']' ;
<fct_ad>   ::= '(' <parameter_type_list_opt> ')' ;

(* <typedef_name> ::= {identifier} ;    (* THE BAD ONE! *) *)

<stmt> ::| <labeled_stmt>
           <exp_stmt>
           <compound_stmt>
           <selection_stmt>
           <iteration_stmt>
           <jump_stmt>    ;
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<labeled_stmt> ::= <label> ':' <stmt> ;

<label> ::| <ident_label> <case_label> ;

<ident_label> ::= <identifier_or_typedef_name> ;

<case_label> ::| <case_exp_label>  'default' ;

<case_exp_label> ::= 'case' <constant_exp> ;

<exp_stmt> ::= <exp_opt> ';' ;

<compound_stmt> ::= <start_scope> <decl_list_opt> <stmt_list> <end_scope> ;

<start_scope> ::= '{' ;    (* Necessary for typedef. *)
<end_scope>   ::= '}' ;    (* Necessary for typedef. *)

<stmt_list> ::* <stmt> ;

<selection_stmt> ::| <if_stmt> <if_else_stmt> <switch_stmt> ;

<if_stmt>      ::= 'if'  '(' <exp> ')' <thenpart:stmt> ;
<if_else_stmt> ::= 'if'  '(' <exp> ')' <thenpart:stmt> 'else' <elsepart:stmt> ;
<switch_stmt>  ::= 'switch' '(' <exp> ')' <stmt> ;

<iteration_stmt> ::| <while_stmt> <do_stmt> <for_stmt> ;
<while_stmt>     ::= 'while' '('  <exp> ')' <stmt> ;
<do_stmt>        ::= 'do' <stmt> 'while' '('  <exp> ')' ';' ;

<for_stmt>   ::= 'for' '(' <init:exp_opt> ';'
                           <step:exp_opt> ';'
                           <test:exp_opt>  ')' <stmt> ;

<jump_stmt>  ::| <goto_stmt> <continue_stmt> <break_stmt> <return_stmt> ;

<goto_stmt>     ::= 'goto' <identifier_or_typedef_name> ';' ;
<continue_stmt> ::= 'continue'                          ';' ;
<break_stmt>    ::= 'break'                             ';' ;
<return_stmt>   ::= 'return' <exp_opt>                  ';' ;

<exp> ::+ <assignment_exp> ',' ;

<assignment_exp> ::= <assignment_list> <conditional_exp> ;

<assignment_list> ::* <assign> ;

<assign> ::= <unary_exp> <assignment_operator> ;

<assignment_operator> ::| '='
                          '*='
                          '/='
                          '%='
                          '+='
                          '-='
                          '<<='
                          '>>='
                          '&='
                          '^='
                          '|=' ;
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<conditional_exp> ::= <cond_stuff_list> <logical_OR_exp> ;

<cond_stuff_list> ::* <cond_stuff> ;

<cond_stuff> ::= <logical_OR_exp> '?' <exp> ':' ;

<constant_exp> ::= <conditional_exp> ;

<logical_OR_exp>     ::+ <logical_AND_exp>    '||' ;
<logical_AND_exp>    ::+ <inclusive_OR_exp>   '&&' ;
<inclusive_OR_exp>   ::+ <exclusive_OR_exp>   '|'  ;
<exclusive_OR_exp>   ::+ <AND_exp>            '^'  ;
<AND_exp>            ::+ <equality_exp>       '&'  ;
<equality_exp>       ::+ <relational_exp>     <eq_op>    ;
<relational_exp>     ::+ <shift_exp>          <rel_op>   ;
<shift_exp>          ::+ <additive_exp>       <shift_op> ;
<additive_exp>       ::+ <multiplicative_exp> <add_op>   ;
<multiplicative_exp> ::+ <cast_exp>           <mul_op>   ;

<eq_op>    ::| '=='  '!='             ;
<rel_op>   ::| '<'   '>'   '<='  '>=' ;
<shift_op> ::| '<<'  '>>'             ;
<add_op>   ::| '+'   '-'              ;
<mul_op>   ::| '*'   '/'   '%'        ;

<cast_exp>  ::= <cast_list> <unary_exp>  ;
<cast_list> ::* <cast>                   ;
<cast>      ::= '(' <type_name> ')'      ;

(* Could perhaps be structured more. But beware of possible conflict
   introduced by two uses of sizeof. *)
<unary_exp> ::| <postfix_exp>
                <preinc_unary_exp>
                <predec_unary_exp>
                <sizeof_unary_exp>
                <sizeof_type_name>
                <unary_operator_cast_exp> ;

<preinc_unary_exp>        ::= '++' <unary_exp> ;
<predec_unary_exp>        ::= '--' <unary_exp> ;
<sizeof_unary_exp>        ::= 'sizeof' <unary_exp> ;
<sizeof_type_name>        ::= 'sizeof' '(' <type_name> ')' ;
<unary_operator_cast_exp> ::= <unary_operator> <cast_exp> ;

<unary_operator> ::| <deref>
                     <addr_of>
                     <unary_plus>
                     <unary_minus>
                     <bit_complement>
                     <negation>   ;

<deref>          ::=  '*' ;
<addr_of>        ::=  '&' ;
<unary_plus>     ::=  '+' ;
<unary_minus>    ::=  '-' ;
<bit_complement> ::=  '~' ;
<negation>       ::=  '!' ;
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<postfix_exp> ::= <primary_exp> <postfix_op_list> ;
<postfix_op_list> ::* <postfix_op> ;

<postfix_op> ::| <indexing> <fct_call> <dot> <arrow> <postinc> <postdec> ;

<indexing> ::= '[' <exp> ']' ;
<fct_call> ::= '(' <argument_exp_list> ')' ;
<dot>      ::= '.'  <identifier_or_typedef_name> ;
<arrow>    ::= '->' <identifier_or_typedef_name> ;
<postinc>  ::= '++' ;
<postdec>  ::= '--' ;

<primary_exp> ::| <identifier_exp> <constant> <string_list> <paren_exp> ;

<string_list>    ::+ {string} ;
<identifier_exp> ::= {identifier} ;
<paren_exp>      ::= '(' <exp> ')' ;

<argument_exp_list> ::* <assignment_exp> ',' ;

<constant> ::| {integer_constant} {character_constant} {floating_constant} ;

(******************************* Lex part ************************************)

Lex:  SLR(1)
Transformations: 'elimEpsilons',
                 'elimSingletons',
                 'useCharClasses' ;

(* output tokens *)

  {identifier}         -> ('_' | {letter}) ({letter} | {digit} | '_')* ;
  {string}             -> '”'  {stringChar}*  '”'  ;
  {character_constant} -> '\'’ {charChar}*    '\'’ ;
  {integer_constant}   -> {basicInteger}   {intSuffix} ;
  {floating_constant}  -> {basicFloat}   {floatSuffix} ;
  {whitespace}         -> [ \t\v\f\n]+ ;

(* string productions *)

  {stringChar}          = '\'’ | {stringOrCharChar} ;
  {charChar}            = '”'  | {stringOrCharChar} ;
  {stringOrCharChar}    =  [^\\"'] | '\\' {escape} ;

  {escape}          =  {nlEsc} | {tabEsc} | {vtEsc}  | {bspEsc} | {crEsc}
                    |  {ffEsc} | {belEsc} | {bslEsc} | {qmEsc}  | {apEsc}
                    |  {dqEsc} | {octEsc} | 'x' {hexEsc}
                    |  {redundantEsc} ;
                       (* Apparently Ansi C is inconsistent: it disallows 'X'
                          as a hex specifier in hex escapes, but allows it in
                          hex integers. *)

  {bslEsc}          =  '\\';
  {qmEsc}           =  '?' ;
  {apEsc}           =  '\'’;
  {dqEsc}           =  '”' ;
  {belEsc}          =  'a' ;
  {bspEsc}          =  'b' ;
  {ffEsc}           =  'f' ;
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  {nlEsc}           =  'n' ;
  {crEsc}           =  'r' ;
  {tabEsc}          =  't' ;
  {vtEsc}           =  'v' ;

  {octEsc}          =  {octalDigit} |
                       {octalDigit} {octalDigit} |
                       {octalDigit} {octalDigit} {octalDigit} ;

  {hexEsc}          =  {hexDigit}   |
                       {hexDigit}   {hexDigit}   |
                       {hexDigit}   {hexDigit}   {hexDigit} ;
                       (* Ansi C allows three hex digits. *)

  {redundantEsc}    =  [^\\?'"0-7abfnrtvx] ;

(* integers *)

  {basicInteger}    =  {octalInteger} | {hexInteger} | {decimalInteger} ;
  {octalInteger}    =  '0'      {octalDigit}* ;
  {hexInteger}      =  '0' [xX] {hexDigit}+   ;
  {decimalInteger}  =  [1-9]    {digit}*      ;
  {intSuffix}       =  {signedInt}   | {signedLong}
                    |  {unsignedInt} | {unsignedLong} ;
  {signedInt}       = ;
  {unsignedInt}     = [uU];
  {signedLong}      = [lL];
  {unsignedLong}    = 'ul' | 'lu' | 'Ul' | 'lU' | 'uL' | 'Lu' | 'UL' | 'LU' ;

(* floats *)

  {basicFloat}      =  {floatWithInt} | {floatNoInt} ;

  {floatWithInt}    =  {integralPart} ({fract0} | {exp} | {fract0} {exp}) ;
  {floatNoInt}      =  {fract1} {exp}? ;
  {integralPart}    =  '0' | {decimalInteger} ;
                       (* Note: defining {integralPart} to be {digit}+
                          results in reduce/reduce conflicts since the
                          parser is forced to decide early on whether it
                          is seeing an integer or a float. The present
                          solution is not quite right:  03.4 is not
                          recognized as a float. *)

  {fract0}          =  '.' {digit}* ;
  {fract1}          =  '.' {digit}+ ;
  {exp}             =  [eE] [+-]? {digit}+ ;

  {floatSuffix}     =  {singleFloat} | {doubleFloat} | {longFloat} ;
  {singleFloat}     =  [fF] ;
  {doubleFloat}     =      ;
  {longFloat}       =  [lL] ;

(* character classes *)

  {octalDigit}      =  [0-7] ;
  {digit}           =  [0-9] ;
  {hexDigit}        =  [0-9a-fA-F] ;
  {letter}          =  [a-zA-Z] ;
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Ansi-C.behavior.self
"Sun-$Revision: 8.4 $"

"Copyright 1992 Sun Microsystems, Inc. and Stanford University.
 See the LICENSE file for license information."

( |
  _ parent* = traits oddball.

  ^ core__decl = ( |
      ^ isTypedef = (
          "Return true if this declaration is a typedef."
          decl__specifiers is_sc__decl__specifiers &&
          [decl__specifiers storage__class token source = 'typedef'].
        ).

      ^ declNames = (
          "Return list of names that are being declared."
          init__declarator__list declNames1.
        ).

      ^ initialize_node: stack = (
          | tdf. |
          false ifTrue: [
              (isTypedef ifTrue: 'typedef' False: 'non-typedef') print.
              ' decl of ' print.
              declNames printLine.
          ].
          tdf: (typedefFilter: stack).
          tdf enterNames: declNames Typedeffed: isTypedef.
          self.
        ).
    | ).

  ^ storage__class__specifier = ( |
      ^ isTypedef1 = ( 'typedef' =  token source. ).
    | ).

  ^ init__declarator__list = ( |
      ^ declNames1 = (
          "Return list of all names declared by this declarator_list."
          | names <- list. |
          names: names copy.
          elements do: [|:iDeclarator| names add: iDeclarator declName].
          names.
        ).
    | ).

  ^ init__declarator = ( |
      ^ declName = (
          "Return name that is being declared."
          declarator declName1.
        ).
    | ).

  ^ declarator = ( |
      ^ declName1 = (
          direct__declarator direct__declarator__part1 declName2.
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        ).
    | ).

  ^ paren__declarator = ( |
      ^ declName2 = ( declarator declName1. ).
    | ).

  ^ type__specifier__or__type__qualifier = ( |
      ^ isTypedef1 = false.
    | ).

  ^ declarator__identifier = ( |
      ^ declName2 = ( id name token source. ).
    | ).

  ^ start__scope = ( |
      ^ initialize_node: stack = (
          | tdf. |
          tdf: (typedefFilter: stack).
          tdf enterScope.
          self.
        ).
    | ).

  ^ end__scope = ( |
      ^ initialize_node: stack = (
          | tdf. |
          tdf: (typedefFilter: stack).
          tdf exitScope.
          self.
        ).
    | ).

"shared_behavior describes slots to be added to the common ancestor
     (traits) of all tree nodes. This is the 'stGramNode traitsSkeleton'
     in the Ansi-C 'stGrammar' object.
     shared_behavior_proto describes slots to be added to
     'stGramNode protoSkeleton'.
     These slots will be copied down into all concrete tree nodes."

  ^ shared_behavior = ( |
      _ typedefFilter: stack = ( stack parser prevParser. ).

      _ traceInitialization = (
          false ifTrue: ['initializing ' print. printLine].
          self.
        ).
    | ).

  ^ shared_behavior_proto = ( |
    | ).
| )



43

About the author
Ole Agesen received a Master’s degree in Computer Science (Kandidatgrad) from Aarhus
University, Denmark in 1990 for work done within the BETA/Mjølner project. He is cur-
rently a doctoral candidate at Stanford University and a member of the Self group at
SMLI. His research interests include object-oriented programming, programming envi-
ronments, and static analysis of programs.



44

© Copyright 1994 Sun Microsystems, Inc. The SMLI Technical Report Series is published by Sun Microsystems Laboratories, Inc.
Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and
credit to the source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any
means graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an information retrieval system,
without the prior written permission of the copyright owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK
are registered trademarks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trade-
marks or registered trademarks of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPAR-
Compiler are licensed exclusively to Sun Microsystems, Inc. All other product names mentioned herein are the trademarks of their
respective owners.


