
1

ABSTRACT

Current visual programming environments make use of
views and tools to present objects. These view-focused envi-
ronments provide great functionality at the expense of dis-
tancing the objects behind the intermediary layers of views
and tools. We propose the object-focused model, which
attempts to foster the notion that objects themselves are
directly available for interaction. Unique, directly manipula-
ble representations of objects make them immediate, and
basing functionality on the object rather than on extrinsic
tools makes them the primary loci of action. But although
immediacy and primacy contribute to the sense of concrete-
ness of the objects, discarding conventional views and tools
potentially restrict the functionality of the environment. For-
tunately, by being extremely faithful to the notion of con-
creteness of objects, two principles emerge that allow
object-focused environments to match the functionality of
view-focused environments. The principle of availability
makes functionality of objects accessible across contexts,
and the principle of liveliness allows objects to participate in
multiple contexts while retaining concreteness. All these
elements help make objects seem more real in the object-
focused environment, hopefully lessening some of the cog-
nitive burden of programming by reducing the distance
between the programmer’s mental model of objects and the
environment’s representation of objects. Programmers can
get the sense that the objects on the screen are the objects in
the program, and thus can think about working with objects
rather than manipulating the environment.

1 INTRODUCTION

Visual programming’s attractiveness stems in large part
from its immediacy—programmers directly interact with
program elements as if they were physical objects. These
concrete visualizations of the program on the computer
screen shape how programmers visualize the program
within their mind, and may give them a foothold from which
to think about the program: people find it easier to deal with
the concrete than with the abstract. Object-oriented pro-
gramming languages (even those that rely primarily on tex-
tual representations) strive toward the same end by
providing objects as the fundamental elements in the pro-
gram. Objects encapsulate and make concrete the elements

of the program, including both the data to be manipulated
and the behavior to be applied to them. Again, this paradigm
works because most people find it easier to deal with the
concrete than with the abstract.

Yet while object-oriented programming languages assist the
programmer by providing a concrete notion of objects, most
programming environments for these languages push the
programmer in the opposite direction, back toward the
abstraction of objects. Rather than presenting objects
directly, the environments present intermediaries that show
certain aspects of the object—for example, an inspector
shows instance variables but cannot show all references to
the object without launching another tool. This approach has
the effect either of fragmenting the object into many differ-
ent aspects, weakening the sense of a single unified object,
or of distancing the object deep in the recesses of the com-
puter, making it reachable only through intermediaries act-
ing to show aspects of it.

Our premise is that a visual programming environment that
closely matches the programming language can lessen the
cognitive load of programming, by reducing the distance
from the programmer’s model of the object to the program-
ming environment’s model of it. We propose that program-
ming environments employ the principles of immediacy and
primacy to present objects as concrete entities that are the
primary loci of action, rather than as abstract entities which
are secondary to the tools and views used to examine and
manipulate them.

But by eschewing conventional views and tools in favor of
direct interaction with objects, it may seem that we must
also give up the functionality that views and tools provide.
For example, views show multiple representations of the
object, allow separate instances of the object on the screen,
and are gathered together into useful tools, like browsers
and debuggers. However, by taking the idea of independent,
individual objects very seriously, we have discovered two
principles, availability and liveliness, which enable us to
attain similar levels of functionality in a concrete world.

We begin by discussing the differences between conven-
tional view-focused environments and the proposed object-
focused paradigm, concentrating on the nature and identity
of objects in those environments. The Seity interface, an

Getting Close to Objects:
Object-Focused Programming Environments

Bay-Wei Chang

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

bay@self.stanford.edu

Randall B. Smith

Sun Microsystems Labs, Inc.
2550 Garcia Avenue

Mountain View, CA 94043
randy.smith@sun.com

Published in Visual Object Oriented Programming, M. Burnett, A. Goldberg, & T. Lewis, eds., Prentice-Hall, 1995, pp. 185-198

David Ungar

Sun Microsystems Labs, Inc.
2550 Garcia Avenue

Mountain View, CA 94043
david.ungar@sun.com



2

experimental browsing user interface for the programming
language Self, is used as an example of a visual environ-
ment that focuses on objects rather than on views and tools.
Within Seity, Self code is still represented textually, but the
objects of the language are presented directly as concrete
entities.

2 VIEW-FOCUSED VERSUS OBJECT-FOCUSED
ENVIRONMENTS

Most current programming environments for object-ori-
ented languages are view-focused: objects are examined and
manipulated through intermediaries, each of which permit a
certain view of the objects (Figure 1).

The Smalltalk-80 environment [Goldberg 1984] is the semi-
nal object-oriented exploratory programming environment.
Tools like class browsers, method browsers, protocol brows-
ers, and inspectors provide various perspectives of the
objects in the system. Tools are associated with objects, but
the same object may be shown by many tools, and the same
tool may show different objects over its lifetime. The tools
are concrete—they are the things that are manipulated in the
environment—but, in a formal sense at least, the objects are
abstracted, distanced, and secondary. The objects are
abstracted because they reveal different parts of themselves
within multiple, separate forums (the tools) and because
they maintain no central locus of existence or manifest iden-
tity. The objects are distanced because they cannot be
reached directly by the programmer, but must be viewed

ObjectsProgrammer

Figure 2. The object-focused environment fosters the notion
that the programmer is interacting directly with the objects.

Programmer Intermediaries Objects

Figure 1. In a view-focused environment, the programmer interacts with intermediaries (tools), which present views of
the objects.



3

through tools. The objects are secondary because the tools
are manipulated as the primary action (Figure 3).

However, this is the most formal interpretation of tools in a
view-focused environment. The programmer can come to
identify tools with the object, as the tools become transpar-
ent with frequent use. Thus a Smalltalk inspector is thought
of as the object which it inspects, thereby pushing the object
to the forefront and eliminating the distance to it. The
object-focused model takes this concept as a starting point,
attempting to eliminate the sense of an intermediary from
the first (Figure 2). The object in the interface is intended to
be concrete, immediate, and primary. For example, Seity
[Chang 1994], an experimental user interface for the proto-
type-based object-oriented programming language Self
[Ungar and Smith 1987], presents a Self object as a box with
a column of slots on its face (Figure 4).

Seity currently represents all Self objects in the same way.
This is consistent with the Self object model: Self is proto-
type-based, meaning it has no classes. New objects are cre-
ated by cloning existing objects; shared behavior (for
example, methods that would reside in the class for a class-
based language) is inherited from other objects. The unifor-
mity of this model encourages a uniform way of looking at
any object, hence the basic set-of-slots representation in
Seity. However, the object-focused model is not only appli-
cable to prototype-based languages. There is no reason why
class-based languages like Smalltalk and C++ cannot be
supported by an object-focused programming environment.
While in Self there is only one kind of object, in Smalltalk

there are instances, classes, and metaclasses. These objects
would appear in the environment with different representa-
tions, each showing appropriate information about itself.
The non-object constructs in languages like C++ would also
appear in the environment with identities appropriate to
their function. The important thing is not that a particular
object model exists for the language (a non-object-oriented
language could also be represented), but that the language
be divided into logical units to be mapped to on-screen
objects. When the division is a useful way of conceptualiz-
ing the program elements, the units will be able to function
effectively in the object-focused programming environment.
There will be no need for other windows, browsers, or other
such tools with which to view objects, because the program-
mer can already see and interact with the objects them-
selves.

But what does the phrase “the objects themselves” actually
mean? After all, the object is simply a mutually agreed
notion between the programmer and the computer, based on
the programming language. This raises two issues: first,
whether a concrete representation can be chosen for the
object that not only can stand for the object, but in fact can
come to be accepted as the object itself (the principle of
immediacy); and second, what that representation should be.

In the object-focused model the on-screen representation of
the object is considered to represent the object itself, not
merely a singular tool through which the object shows itself.
To this end, there is never more than one such representation
of any given object (though this representation can be mal-

Figure 3. The same object (in this case, the Point class) can show up in multiple tools in the
Smalltalk environment; the same system browser can view many different classes and methods.



4

leable). In addition, this particular on-screen representation
is never associated with any other object. Since there is a
one-to-one mapping between the representation and the
object, it is a small step to discard the strictly accurate
notion that the representation is an intermediary separate
from the object, and to consider the concrete representation
to actually be the object. While the programmer surely does
not truly believe that the on-screen representation is the
object, it is convenient and natural to act as if it were: the
offered concrete manifestation is easier to embrace than an
abstract one, and the object is at hand to be examined and
manipulated. This identification encourages programmers to
feel as if they are directly dealing with the objects of the lan-
guage. Hutchins et al. [Hutchins et al. 1986] refer to this
sense of immediacy with the semantic objects of interest as
direct engagement. Direct engagement is achieved in view-
focused environments when tools become transparent; by
eliminating the levels of indirection introduced by view-
focused tools, object-focused environments may increase
the frequency of direct engagement.

The constraint in choosing the representation itself is that it
must match the model of objects in the language. An object
in Seity, for example, is presented essentially as a set of
name-value pairs, which corresponds precisely with a Self
object. This of course leaves wide latitude in the details of
the representation—the Seity representation could have as
easily been a simple rectangle instead of a 3D slab. But
these details are important, for the programmer will come to
identify the representation with the language object, and it
will shape his or her mental model of objects. The concrete
representation informs the programmer of the nature of the
objects, and the more accurately it can reflect a useful model
of them, the more likely the programmer will feel comfort-
able working with such representations in the environment.

The concreteness of Self objects is heightened in Seity by
making it seem as if those objects are physical, real-world
things. Thus their concreteness is not only one of spatial
localization and identity, but also one of image and behav-

ior: the objects look like 3D slabs, and they move solidly.
An object has an identity; it never appears more than once
on the screen. Instead, multiple references to it refer (via
arrows) to the same instance (Figure 5). Furthermore, the
objects are placed in an environment that can be called an
artificial reality, a world that has some features reminiscent
of the real world but is primarily a consistent, individual
universe unto itself. In the Seity Self reality, objects move
smoothly with the use of animation, employing cartoon-
inspired techniques to make their movements seem lively,
engaging, and realistic [Chang and Ungar 1993]. The use of
visual solidity and animation helps make objects seem real,
furthering the illusion that these are indeed the objects in the
program.

The overall effect of making objects immediate is, in fact, to
make them seem real. Our goal is to create the sense that the
object is directly available to the programmer: the object is
the thing right there on the screen.

3 OBJECTS AT THE CENTER OF ACTION

Of course, just seeing the object isn’t enough to give it a
complete sense of identity. It must also have appropriate
properties associated with it, just as real-world objects have
properties. That is, just as the properties of real-world
objects define, individualize, and unify them, the properties
and behavior of objects in the programming environment
ought to do the same. Since its properties and behavior are
properly owned by the object, the programmer must go to
the object to get at them—the principle of primacy. Consoli-
dating the functionality needed of the object within itself
serves to centralize focus on the object, rather than on out-
side view-focused tools that have traditionally encapsulated
areas of functionality. Again, this makes the objects primary
in the environment, which in turn brings the programmer
closer to the objects. But can all the functionality of tradi-
tional view-focused tools be preserved in the object-focused
model?

Figure 4. Two Self objects in Seity.



5

3.1 VIEWS AND TOOLS REVISITED

For the purposes of this discussion, the term view will be
used to mean a particular way of presenting some subset of
information within an object. Views allow an objects to be
understood from defined perspectives, carving up the large
semantic space of the object and packaging up the chunks in
useful and comprehensible configurations. They specialize
the presentation of the object for a particular task—for
example, showing the values of variables, the code of meth-
ods, or the place on a stack. Each view is a discrete unit of
functionality.

Tools, as used in this discussion, are objects in the interface
that centralize functionality for a given activity. They are a
conglomeration of views, with ways to manipulate those
views. A debugger tool, for instance, might show the current
stack, with ways to look at activations on that stack and
objects involved in those activations. Several views of dif-
ferent objects would be involved in a single debugger tool.
What the views have in common is that the functionality
they provide is needed in this one activity: debugging.

View-focused tools for programming emphasize the activi-
ties the programmer engages in. There are tools for brows-
ing objects, for writing code, for debugging, and for
presenting inheritance hierarchies. View-focused environ-
ments make the programming activity explicit, but at the
expense of somewhat distancing the targets of that program-
ming activity, the objects with which one is working. (This
has also been called the activity-focused model [Hedin and
Magnusson 1988].) The objects are somewhat subordinated
to the operations on them and the ways of looking at them.

3.2 OBJECT-FOCUSED FUNCTIONALITY

Object-focused environments achieve functionality by giv-
ing objects the behavior needed for studying and changing
them. Properties of the object are part of the object, so we
just need to know how to get at them—perhaps by pressing
a button, choosing a menu item, or selecting an option from
a pull-out drawer. The same kind of direct manipulation
techniques used to manipulate view-focused tools can be
applied to manipulate the objects themselves. The difference
is that the result affects the object itself, not a disconnected
intermediary. The object may show more information,
change aspects of its presentation, or even radically trans-
form its representation. In each manifestation, however, it is
clear that the object itself is being manipulated and exam-
ined.

A Self object in Seity, for example, is a complete entity. No
separate browser or inspector is needed to examine it—the
object itself serves that purpose. Poking a button gets the
contents of a slot (the object in the slot grows from a dot
within the button to a full-sized 3D slab, see Figure 6). Pok-
ing other buttons can remove the object from the screen (it
falls off the bottom of the screen), or hide a slot from view
(the slot slides out from the slab and get sucked into the bot-
tom of the slab). Other actions, like finding all the references
to the object, are initiated from menus integrated into the
object (Figure 7).

While view-focused environments make the programming
activity explicit, the object-focused model incorporates the
manipulation of the objects as the general activity; program-
ming activities are implicit within those manipulations.
Rather than centralizing functionality into a monolithic tool,
smaller chunks of functionality are coupled to the object, so

Figure 5. Objects in Seity maintain their identity by not appearing more than once on the screen.



6

that any functionality can be invoked at any time on the
object, not only when it is being viewed by a particular kind
of tool. This principle of availability frees the programmer
from modes in which limited portions of object functionality
are available at any one time—for example, within a view-
focused debugger tool it might be possible to inspect an
object’s slots, but it might not be possible to find all refer-
ences to that object without going to a separate tool. In addi-
tion, object-focused functionality naturally shares
functionality across conceptual domains of activity. The
activities of debugging, browsing, and creating objects
might all require inspecting the contents of slots, or finding
all senders of a message. Rather than distribute this func-
tionality of the object in many places, as discrete tools
would, objects in the programming environment implement
it as part of themselves. When objects are concrete, their
behavior is always available. The principle of availability is
a natural consequence of the object-focused model.

3.3 VIEW FUNCTIONALITY FOR CONCRETE OBJECTS

Clear benefits accrue from the ability to view an object in
more than one respect, and it would be a loss if they were
sacrificed on the altar of concreteness. Luckily, concrete
objects in the object-focused model can indeed have multi-

Figure 6. Seity allows examination of the contents of a
slot by poking directly on the slot to get the object inside.

ple views—by transforming themselves into different visual
representations when requested. Like a view in a view-
focused tool, the object is specialized for the current task;
but unlike the view-focused tool, it is implicit that the thing
on the screen is still the same object, just showing a different
face. The concreteness is retained because the view is not
decoupled from the object.

Multiple simultaneous views, which are useful for compar-
ing disjunct aspects of the object at the same time, can also
be handled. Objects show the two representations at once,
but in keeping with the goal of concreteness, the object
remains connected and solid. When multiple simultaneous
views of an object are needed in separated locations, the
object-focused model potentially runs into trouble. The
essence of the object-focused model is that objects have a
single identity. The single strongest cue that objects are con-

Figure 7. Functions not available
directly on the object are provided in
menus which present themselves as

part of the object.



7

crete is that, like real-world objects, they cannot be in two
places at one time. Disjoint instances of the same object
would destroy the illusion of the identity of the object,
weakening the sense that the things on the screen are the
objects in the program. This functionality could still be pro-
vided by reifying the remote views as view objects, but
there may be a better way.

We suggest that the principle of liveliness can at once pro-
vide much of the functionality of disjoint views while
increasing the sense of concreteness of objects. A lively
interface allows objects to move, change, and interact under
their own power. The programmer still controls what hap-
pens, but the interface is no longer a static environment, pas-
sive until the programmer reaches out and grabs an object or
pushes a button. Objects go where they are needed, when
they are needed.

We have experimented with liveliness in the Seity interface:
objects enter and leave by moving on and off screen under
their own power; self-dismissing notifiers simply drop off
the screen if they have not been handled; and an object can
be arranged to come to the cursor on the click of a mouse
button (Figure 8).

Figure 8. A simple example of liveliness
in Seity: objects enter the screen under

their own power.

Liveliness mitigates the need for disjoint views by letting
objects move from one place to another and transform them-
selves along the way if necessary. If an object is needed in
multiple places, it can move to those places when it is
needed, depending on the programmer’s desire or the envi-
ronment’s needs. The objects are in collaboration, not com-
petition, with the programmer.

3.4 TOOLS—COOPERATING CONCRETE OBJECTS

Tools, in the traditional view-focused environment, bring
together multiple objects in order to operate on several at
once, or to show relationships among them. The object-
focused environment needs the ability to work with multiple
objects at once as well. In fact, we need not give up the for-
mal notion of a tool, if we recast it as an organizer and coor-
dinator of multiple objects, rather than as a repository for
remote views of objects. The role of the coordinator is then
played by an object intimately connected with the activity,
not an outside presence.

For example, consider the activity of debugging. An object-
focused environment can present the process object, which
has a button that will show the current stack. Pressing the
button begins assembling the stack, which calls in the acti-
vation objects. The objects may simply gather in a column,
connected to one another by arrows, or the process object
might sprout a shelf and the activations will align them-
selves in a tower on that surface. Just like in a traditional
view of a stack, the result is a list of activation frames, but
the frames feel more like the activation objects themselves
than they might in a traditional view. Because they are
lively, we can pull activations off the stack, confident that
when we want to look at the stack as a whole again, the
unglued activations will remember their role and return.
Because they are available, any browsing, searching, of
modifying—any functionality ever available in the object—
can be performed on the activation objects without going
elsewhere or changing modes. This debugging “tool” is
merely the conglomeration of lively, available, concrete
objects cooperating under the direction of another, the pro-
cess object. It can be seen as a whole unit, or as a momen-
tary collaboration between many different objects. The
participating objects are free to be coaxed out and individu-
ally manipulated at any time, and can even participate in
more than one activity at one time, by shuttling themselves
around when necessary.

Cooperating concrete objects can mimic any view-focused
tool to provide a locus in which several objects are acted on
or show their relationships to one another. But concreteness
increases the utility of this locus over that of a view-focused
tool by maintaining the individuality and usefulness of each
participating object.

Currently, Seity does not have facilities for multiple views
of objects or object-focused debugging such as that
described above. However, our experience with the object-
focused browsing environment suggests that a full object-
focused programming environment could be both effective
and pleasing to use.



8

4 SUMMARY

Object-oriented programming languages present an oppor-
tunity to break out of the largely text-oriented environments
of conventional languages. We propose the object-focused
model of an object-oriented programming environment, in
contrast to the traditional view-focused model. In the object-
focused model, objects are made concrete by enforcing their
unique identities; they are made immediate by showing
directly manipulable representations unfettered by interme-
diaries; and they are made primary as the source of action by
basing functionality on the objects rather than on remote
tools. In addition, the object-focused model achieves most
of the functionality natural to a view-focused environment
by applying the principle of availability, which makes avail-
able all the functionality of objects in any context, and the
principle of liveliness, which allows them to move and
change under their own power.

The resulting object-focused programming environment can
make objects seem more real, potentially lessening some of
the cognitive burden of programming by reducing the dis-
tance between the programmer’s mental model of objects
and the environment’s representation of them. Programmers
can get the sense that the objects on the screen are the
objects in the program, and thus can think about working
with objects rather than about manipulating the environ-
ment.

REFERENCES

1. [Chang and Ungar 1993] B. Chang and D. Ungar, “Ani-
mation: From cartoons to the user interface,” UIST’93
Conference Proceedings, Atlanta, Georgia, Nov. 3-5,
1993, pp. 45-55.

2. [Chang 1994] B. Chang, Seity: Object-Focused Interac-
tion in the Self User Interface, Ph.D. dissertation in
preparation, Stanford University, 1994.

3. [Goldberg 1984] A. Goldberg, Smalltalk-80: The Inter-
active Programming Environment, Addison-Wesley,
Reading, MA, 1984.

4. [Hedin and Magnusson 1988] G. Hedin and B. Magnus-
son, “The Mjølner environment: Direct interaction with
abstractions,” ECOOP’88 Conference Proceedings,
published as Lecture Notes in Computer Science #322,
Springer-Verlag, New York, 1988, pp. 41-54.

5. [Hutchins et al. 1986] E.L. Hutchins, J.D. Hollan, and
D.A. Norman, “Direct manipulation interfaces,” in User
Centered System Design (D. Norman and S. Draper,
eds.), Lawrence Erlbaum, Hillsdale, New Jersey, 1986,
pp. 87-124.

6. [Ungar and Smith 1987] D. Ungar and R. Smith, “Self:
The power of simplicity,” OOPSLA’87 Conference Pro-
ceedings, published as SIGPLAN Notices, Vol. 22, No.
2, 1987, pp. 227-241.


