Published in UIST'93: User Interface Software and Technology, Atlanta, GA, November 3-5, 1993. pp. 45-55

Animation:
From Cartoons to the User Interface

Bay-Wei Chang

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

bay@self.stanford.edu

You must learn to respect that golden atom, that
single frame of action, that 1/24th of a second,
because the difference between lightning and the
lightning bug may hinge on that single frame.

— Chuck Jones [10]

ABSTRACT

User interfaces are often based on static presentations, a
model ill suited for conveying change. Consequently, events
on the screen frequently startle and confuse users. Cartoon
animation, in contrast, is exceedingly successful at engaging
its audience; even the most bizarre events are easily
comprehended. The Self user interface has served as a
testbed for the application of cartoon animation techniques
as a means of making the interface easier to understand and
more pleasant to use. Attention to timing and transient detail
allows Self objects to move solidly. Use of cartoon-style
motion blur allows Self objects to move quickly and still
maintain their comprehensibility. Self objects arrive and
depart smoothly, without sudden materializations and
disappearances, and they rise to the front of overlapping
objects smoothly through the use of dissolve. Anticipating
motion with a small contrary motion and pacing the middle
of transitions faster than the endpoints results in smoother
and clearer movements. Despite the differences between
user interfaces and cartoons —cartoons are frivolous,
passive entertainment and user interfaces are serious,
interactive tools—cartoon animation has much to lend to
user interfaces to realize both affective and cognitive
benefits.

KEYWORDS: animation, user interfaces, cartoons, motion
blur, Self

1 INTRODUCTION

User interfaces are often based on static presentations—a
series of displays each showing a new state of the system.
Typically, there is much design that goes into the details of

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1993 ACM

David Ungar

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue
Mountain View, CA 94043

david.ungar@sun.com

these tableaux, but less thought is given to the transitions
between them. Visual changes in the user interface are
sudden and often unexpected, surprising users and forcing
them to mentally step away from their task in order to
grapple with understanding what is happening in the
interface itself.

When the user cannot visually track the changes occurring
in the interface, the causal connection between the old state
of the screen and the new state of the screen is not
immediately clear. How are the objects now on the screen
related to the ones which were there a moment ago? Are
they the same objects, or have they been replaced by
different objects? What changes are directly related to the
user’s actions, and which are incidental? To be able to
efficiently and reliably interpret what has happened when
the screen changes state, the user must be prepared with an
expectation of what the screen will look like after the action.
In the case of most interactions in unanimated interfaces,
this expectation can only come by experience; little in the
interface or the action gives the user a clue about what will
happen, what is happening, or what just happened.

For example, the Microsoft Windows interface [15] expands
an icon to a window by eliminating the icon and drawing the
window in the next instant. In this case the first static
presentation is the screen with the icon; the next is the
screen with an expanded window. Much of the screen
changes suddenly and without indication of the relationship
between the old state and the new state. Current pop-up
menus suffer from the same problem —one instant there is
nothing there; the next instant a menu obscures part of the
display.

Moving objects from one location to another is yet another
example. Most current systems let the user move an outline
of the object, and then, when the user is finished the move,
the screen suddenly changes in two places: the object in the
old location vanishes and the object appears in the new
location. Sudden change, flash of the screen, no hint how the
two states are related: the user must compare the current
state and the preceding state and deduce the connection.

Users overcome obstacles like these by experience. The first
few encounters are the worst; eventually users learn the
behavior of the interface and come to interact with it
efficiently. Yet while some of the cognitive load of



interpreting changes in the interface may be reduced
through repeated exposure, it is likely that some burden
remains. For example, a user may know that clicking an
icon will open a window, but the sudden change to the
screen when the window opens may still require a moment
of assessment.

Cartoons, in contrast, excel at providing enough information
for the audience to follow the action without ever being
startled and confused by puzzling behavior. Cartoon
characters do not simply disappear from one place and
appear in another; they appear to move solidly and
continuously. Cartoon objects do not flash suddenly into
different sizes and shapes; they appear to grow and deform
smoothly. Animation provides the visual cues necessary to
understand what is happening before, during, and after the
action. Unlike user interfaces which burden the user with the
responsibility of relying on experience and deductive ability
to interpret changes, cartoon animation leverages off of
human experience of how objects change and move
smoothly in the real world.

The experimental user interface for the programming
language Self uses techniques drawn from cartoon
animation to replace sudden changes with smooth
transitions, offloading some of the cognitive burden of
interpreting the change to the perceptual system. For
example, a small object grows continuously to a large,
expanded object. A menu transforms smoothly from the
menu button that is clicked on to the full menu. Objects
move solidly from one location to another, maintaining the
illusion of solid movement even if they must cross great
distances in a single frame. These and other, more subtle,
applications of animation to the interface work together to
make changes on the screen smooth and clear.

Bringing this kind of animation to the user interface has
both cognitive and affective benefits. By offloading
interpretation of changes to the perceptual system,
animation allows the user to continue thinking about the
task domain, with no need to shift contexts to the interface
domain. By eliminating sudden visual changes, animation
lessens the chance that the user is surprised, thus reducing
his uneasiness. So employing animation not only aids the
user in understanding the events in the user interface, but
also makes the user’s experience of the interface more
pleasant and comfortable.

Animation has been used in other work to illuminate
change, for example, in data visualization [7, 14, 17],
algorithm animation and program visualization [3, 5, 8, 21]
and animated demonstration and help [2, 16, 22, 23]. These
uses of animation clarify data, or programs, or information
on how to use the interface, but not the operating of the
interface itself. Cartoon-style animation as used in the Self
interface is animation of transition and feedback, to borrow
from the informal taxonomy of Baecker and Small [1]. The
Alternate Reality Kit (ARK) [19, 20], an environment for
building interactive simulations, widely uses animation to
show the behavior of objects in the interface. ARK blurs the
distinction between data and interface by unifying both
simulation objects and interface objects as concrete objects.
The Information Visualizer framework [6, 14, 17] also

makes data more concrete, using three-dimensional
interactive graphics to further heighten the concreteness.
The cone tree and perspective wall techniques implemented
in the Information Visualizer use fast 3D animation to aid
the user in tracking objects as they change position. This
animation, however, is performed straightforwardly, without
using cartoon-inspired techniques that could make the
system even more alive and engaging.

2 APPLYING PRINCIPLES OF CARTOON ANIMATION TO
THE USER INTERFACE

Over the years animators have developed a canon of
principles which capture much of the essence of the craft of
animation. This section looks at some of those principles of
animation in their original context of cartoons, and also in
the context of user interfaces—why the principles are
relevant and how they have been applied in an experimental
user interface for the programming language Self [26].

We discuss the principles of animation in three groups:
solidity, exaggeration, and reinforcement. The principles of
animation mentioned in this section are drawn from the
excellent treatise on cartoon animation, Disney Animation:
The Illusion of Life, by Disney animators Frank Thomas and
Ollie Johnston [24].

2.1 Solidity

Characters and objects in cartoons are solid. They move
about as if they are three-dimensional, real things; they react
to external forces as if they have mass and are susceptible to
inertia. From beginning to end, they are tangible things; you
could reach out and grab them if only you could get into the
cartoon. This solidity is achieved not merely by drawing
objects as filled-in areas, but by infusing their motion with a
sense of weight and balance. Animation principles such as
slow in and slow out, follow through, and arcs, all discussed
later, contribute in keeping the motion of objects realistic
and reinforcing the sense that they are solid.

Making an object in the user interface solid gives it an
individual identity as a separate, interactable thing. Solidity
elevates an element from a mere picture on the screen to a
tangible entity that is real enough to possess its own
behavior. In the Self user interface, objects are drawn as
three-dimensional boxes, and they move solidly and
continuously as the user drags them with the mouse. In
contrast, many current interfaces only allow the user to drag
the outline of the object. This optimization destroys the
illusion of solidity; it forces on the user the fact that he deals
only with pictures of the object: a rough outline that can be
dragged and a more detailed rendering that appears first in
one place and then suddenly, when the mouse button is
released, in another. By maintaining their solidity as they are
dragged, Self objects subtly reinforce the illusion that they
are not mere pictures on the screen, but are individual,
manipulable things.

Moving an object solidly is not enough, however. In order to
maintain the illusion, the movement must be at a high
enough frame rate to keep up with the user’s cursor. A drop
in performance can result in the object lagging behind the
cursor and jumping from place to place, a distracting and



Slow Medium

3

position
[]

time time

Fast Motion Blur

time time

Figure 1. At slow and medium speeds, objects overlap with their previous images. At fast speeds, however,
there is a gap between the object and its previous image, making the movement look disconnected and con-
fusing. Motion blur fills in that gap, aiding the eye in tracking the motion of the object. (Higher frame rates
reduce, but do not eliminate, the need for motion blur—a fast enough moving object will still leave a gap.)

perhaps disturbing sight. The Self user interface has been
tuned to maintain a frame rate of 20 to 30 frames per second
during interactive object movement. Furthermore, the inner
loop of the movement code has been carefully crafted to
prevent flicker, which would undermine the illusion of
solidity.

2.1.1 Solidity: Motion blur

But frequent, flicker-free frames are still not enough: a
sudden jerk of the mouse can still cause the object to leap
from one side of the screen to the other in a single frame,
without passing through the intervening landscape.
Although the object is indeed keeping up with the cursor,
the large movement across the screen no longer seems like
the movement of one object. Because of persistence of

No Motion Blur

time

vision, the eye is presented with the short-lived image of
two objects, as if one had flashed into being and then the
other had winked out of existence. The solidity, and even the
very identity of the object breaks down. (This effect is also
known as temporal aliasing.)

Cartoon animators confronted this problem long ago, and
developed a rule of thumb: if an object moves more than
half its size (alternatively, more than its full size) between
any two frames, motion blur must be added. Motion blur
fills in the gaps between the old and new position of the
object, appeasing the eye into seeing continuous motion
from one point to another (see Figure 1). Although related to
realistic temporal anti-aliasing, cartoon motion blur attempts
to remedy the same flaws more cheaply —for example, a
smear of color. Cartoons suggest that even loose

Motion Blur

Figure 2. When objects are moved suddenly from one position to another, it can seem as if
there are two instances of the object on the screen at the same time. The eye sees some-
thing like the middle frame of the “no motion blur” figure, even though such a frame doesn’t
actually ever appear on the screen. Motion blur reduces this effect, and gives a visual indica-
tion of the travel of the object, so that it is easy to see which object moved where.



approximations to true temporal anti-aliasing can contribute
great benefits. The Road Runner zips across the width of the
screen in a handful of frames, but the Road Runner is not
drawn at its appropriate location in each of those frames.
Instead, a streak of colors (the motion blur) follows the
Road Runner, and sometimes entirely supplants the Road
Runner. This same effect is used for running legs, falling
objects, and anything in which the action moves the object
more than part of its width, that is, any movement that
would look disconnected and wrong.

Careful study of cartoons reveals that animators use at least
two different kinds of motion blur. The most realistic form is
a translucent streak, typically painted on with a drybrush
technique. The partial transparency of the resulting streak
mimics the physical effect in reality and produces a very
realistic effect. The other technique used for motion blur
involves painting more than one pose in a single frame. For

example, a single frame of an arm swinging rapidly back
and forth might be rendered with several arms in different
positions. This technique increases the effective frame rate
and is most convincing with oscillatory motion, where the
endpoints are more strongly perceived. (The animation of
icons expanding to windows in the Macintosh Finder [27]
uses this stutter motion blur.)

Just as in cartoons, the Self interface uses motion blur to
connect the gaps that occur between fast moving objects.
The motion blur is implemented as a trail the color and
width of the object, connecting the object’s old location with
its new location (see Figure 2). The trail is stippled to create
the illusion of translucency. The blur makes motion seem
faster, smoother, and helps the user keep track of the moving
object.

The effectiveness of motion blur demonstrates that showing
motion is not just showing a series of still pictures. A frame

Figure 3. Upon a click, a menu
button transforms itself from a
button into the full menu. After a
selection has been made, it
shrinks back down to a button.
(In this and other figures, only a
few frames of the actual anima-
tion is shown.)

down into their tail.

Figure 4. Arrows grow from their tail to hit
their target. The target reacts to the con-
tact with a small wiggling jolt (here sug-
gested by a few lines), as discussed in
section 2.3.3. Arrows will also shrink back

Figure 5. Objects grow from a point
to the full size object; any connecting
arrow will grow smoothly along with
the object. Currently, text does not
grow along with the object; instead,
the text fades in smoothly on the fully
grown object.



from the middle of an animated motion sequence would not
look like a snapshot of that instant in reality: it would not
show the object frozen in time, sitting pristinely in between
its starting point and its destination. Instead, it would show
the object with a blur trail, which has no physical existence.
Its claim in the real world comes from the workings of the
human visual system. If one models the visual system as
having a simple finite rise and fall time, one would expect a
short leading trail of blur, growing smoothly less
transparent, and a longer following trail, tailing off into
transparency. Cartoon animators do include both leading
and trailing blurs, but even rendering a crude, trailing-only,
fixed-transparency streak is enough to provide the visual
system with the important subliminal cues that are essential
to maintaining the illusion of fast motion.

2.1.2 Solidity: Arrivals and departures

In addition to moving continuously, real objects arrive and
depart continuously without materializing from or
disappearing into thin air. Rather than simply appearing and
disappearing, which are sudden and potentially confusing
changes, Self objects maintain the illusion of reality by
smoothly easing on and off the screen. Three variations have
appeared in the interface for arriving objects: objects fly in
from offscreen, objects grow from a point to their full size,
and objects dissolve onto the screen. Objects exit in the
opposite way that they entered, for example, flying off the
edge of the screen or fading into nothing. In each of these
cases, the action, though quick, is smooth and continuous,
giving the user the visual cues necessary to understand what
is happening.

Animation to maintain solidity is ubiquitous in the Self
world. Arrows that point from one object to another grow
smoothly from their tail to their destination, and retract
smoothly as well. Pop-up menus are really grow-up
menus—the menu button transforms into a menu in its full
open state, and shrink back down to a button after a
selection is made (see Figures 3,4, and 5).

A final example of solidity in the Self world is how objects
raise and lower themselves to the top or bottom of the layers
of overlapping objects. In typical systems with overlapping
elements, objects change layers suddenly and without any
indication of the action other than the final, changed state. In
the Self interface, an object can dissolve through other
objects to show that it is rising to the top of the pile or
sinking to the bottom (see Figure 6). Paradoxically,
dissolving through other objects rather than suddenly
changing layers seems to increase the sense that the object is
solid, even though solid objects in the real world do no such
thing.

2.2 Exaggeration

Cartoon animation does not merely mimic reality. Like all
dramatic mediums, it takes liberties with what is strictly
realistic in order to more effectively convey its message.
Adhering to what is possible in the physical world is not
only limiting, but also less effective at achieving “realism.”
Paradoxically, only by exaggeration do cartoons achieve
more realism. The dwarves in Disney’s Snow White, for
example, are highly stylized —their faces and bodies are

Figure 6. Objects dissolve through
one another as they change their lay-
ering.

drawn with oversize, weighty features, their movements are
large and exaggerated. In contrast, Snow White is drawn
with realistic proportions (her nose, to mention just one
feature, many times smaller than any of the dwarf’s), and
her movements just those a real person would have, much
smaller and more measured than that of the dwarves’. Yet
Snow White, as realistically as she is rendered, seems bland
and wooden in comparison to the expressive and engaging
dwarves. The dwarves simply seem more realistic.



Exaggeration increases the prominence of features deemed
significant by the animator, whether these features are
physical characteristics, qualities of action, or extremities of
situation. By increasing the salience of certain aspects of the
world, the animator gives the audience footholds from
which to better interpret the nature of the character, action,
or situation. For example, each of the seven dwarves in
Snow White has a defining characteristic, often echoed by
his name (Dopey, Grumpy, Sneezy). These characteristics
would come out as strongly even without the name serving
as an additional clue: each dwarf’s physical features,
movements, and actions all are broadly exaggerated to
emphasize his designated trait.

In addition, exaggeration makes salient particulars that
would likely otherwise be overlooked by the audience.
Unlike in the real world, in which we can only point our
fingers to something, in a cartoon the animator can cause
that something to call more attention to itself, simply by
exaggerating its appearance or its movement. Important
events that might pass unnoticed because they exist so
fleetingly can be exaggerated to make them more noticeable.

Like cartoons, the user interface must both give the user
footholds from which to better interpret the nature of the
objects and the situation in the user interface world, and also
make salient particulars that might otherwise be overlooked
by the user. Employing exaggeration to the behavior of user
interface objects makes that behavior more understandable,
more “realistic,” and thus makes the user interface more
engaging.

2.2.1 Exaggeration: Anticipation

Anticipation is a way of exaggerating a preliminary action in
order to give the audience a cue about the main action to
follow. When the action does occur, the audience is prepared
and is ready to follow that action, without having to deal
with being surprised by the occurrence itself. When an
object in the Self interface is about to move (due to any
action other than the user grabbing the object to move it
directly), it anticipates that move with small, quick contrary
movement (see Figure 7). Like the Coyote in the Road
Runner cartoons, springing back onto its rear leg before
dashing off after the Road Runner, this anticipatory move
draws the user’s eye to it, preparing the user to perceptually,
as well as cognitively, follow the ensuing action.

Exaggeration techniques like anticipation (and some uses of
follow through, discussed later) do not obey the laws of
physics as we know them in the real world. As unrealistic as
these purely theatrical techniques are, however, they are
instrumental in keeping the user engaged with the interface.
They are continual providers of hints to the user, cues to
interpreting the succession of states in the user interface.
Without such cues, the notion of the interface as a world that
encompasses the user breaks down, and its existence noses
itself into the user’s awareness. Every element in the
interface must be tuned to reinforce the illusion of an
artificial reality.

quick
contrary
motion

main
motion

Figure 7. Objects anticipate major actions
with a quick contrary motion that draws
the user eye to the object in preparation
for the main motion to come.

2.3 Reinforcement

All of the animation techniques contribute to the
reinforcement of the illusion of reality. While some are quite
drastic effects—attentive watching easily reveals the blur of
colors that represent the Road Runner streaking across the
screen—in effect they are subliminal. The audience is not
consciously aware of these effects. Rather, the audience is
aware of the feeling of realism in the action. They are not
jarred out of the world of the cartoon by confusion about
what’s going on, because all the details that conspire to
make the illusion have been attended to. The techniques
described in this section, by reinforcing the illusion of
reality, work to keep the audience engaged with the cartoon,
or the user engaged with the interface.

2.3.1 Reinforcement: Slow in and slow out

Cartoon characters, as already mentioned, move solidly.
However, this motion is not simply composed of drawings
equally spaced in space and time. To capture the feeling of
movement in the real world, animators draw action with
slow in and slow out: characters move out of a pose slowly,
then quickly during the bulk of the entire movement, and
then slowly into the ending pose. This helps give a feeling



slowly movx\A
out of beginning

pose

move faster
during the middle
part of the movement

slowly move
into final pose

Figure 8. Objects ease out of their beginning poses and ease into their final poses. Although these
motions are slower than that during the main portion of the movement, they are still quite fast.

of weight to the character and physicality to the movement.
Slow in and slow out also contribute to minimizing surprise,
slow in preparing the audience for faster movement to come
and slow out preparing for an end to the movement.
Furthermore, slow in and slow out satisfy these purposes
while being a subtle and quickly passing effect. Yet without
it, animated movement feels artificial and dead. Small
details like slow in and slow out can have large effects on
the feel of the animation.

Slow in and slow out is ubiquitous in the animation in the
Self world. All movement uses it: boxes and menus growing
or shrinking; arrows growing and shrinking; boxes entering
from offscreen and exiting offscreen (see Figure 8). Even
the dissolves used to dissolve objects or fade-in text uses
slow in and slow out.

2.3.2 Reinforcement: Arcs

Another principle used for its subliminal effect is the
principle of arcs. Rather than move in straight lines, objects
move along gentle curves when they are moving non-

Figure 9. When objects travel under their own power (non-
interactively), they move in arcs rather than straight lines.

interactively (see Figure 9). Like objects in cartoons, Self
objects are meant to be existing in some physical world, and
like objects in the real world, ought to move along lifelike
arcs. The arc flavors the movement, giving it a livelier and
more appealing character than a simple linear path would.

2.3.3 Reinforcement: Follow through

A final example of reinforcing principle is follow through.
Objects in the real world do not come to sudden stops, all of
the object coming to a standstill at once. Animators made
this observation and made sure that objects coming to a stop
in the cartoon would also have motion that continues after
the main motion is completed. This could include parts of
the body, clothing, or the entire ending pose slowly
becoming slightly more extreme (known as “the moving
hold” [24]). Follow through is also a technique of
exaggeration—emphasizing some motions at the end of a
movement to make the overall action clearer. The Self
interface employs the principle of follow through in its use
of wiggling objects. Objects coming to a stop will wiggle at
the end of their motion, as if reacting to a small spring at the
end of their travel (see Figure 10). The wiggle flavors the
motion, giving the object a more distinct character and
enhancing the illusion that it is solid. The wiggling is also
used when an arrow grows from one object to hit another
object. The target object reacts to the arrow’s collision by
vibrating back and forth, giving the sense that the arrow has
weight, and that the object is situated in the world, not
merely a picture drawn on the background (see Figure 4).

Building an illusion is a fragile affair; details of the
animation have disproportionately large effect on the overall
feel of the world. While such subtle effects as slow in and
slow out, arcs, and follow through could be left out of the
animation without destroying the sense of a somewhat
concrete world, their addition yields a world much livelier
and more realistic. The overall effect is a more convincing
reality, one more likely to capture and retain the engagement
of the user.



Summary: Animation principles in cartoons and Self

Principle Examples from cartoons Examples from the Self interface
solid + parts of Snow White’s dwarves may + objects move solidly
drawing squash and stretch, but always * objects enter screen by travelling from offscreen or growing from a point
. maintain their connectedness and » menus transform smoothly from a button to an open menu
5 weight + arrows grow and shrink smoothly
?} « transfer of momentum as objects respond to being hit by an arrow
motion blur * Road Runner is a blue and red streak | - stippled region connects old and new locations of a moving object
dissolves n/a + objects dissolve through one another when changing layering
_5 anticipation + Coyote rears back onto back leg * objects preface forward movement with small, quick contrary movement
© before dashing after Road Runner
()
D
| follow + Road Runner vibrates for an instant - objects come to a stop and vibrate into place
i through after a quick stop + objects wiggle when hit by an arrow
slow in and + Coyote springs up from ground, with + objects move with slow in and slow out
slow out fastest movement at center of the arc | + objects and arrows grow and shrink with slow in and slow out
‘qC: - objects dissolve through other objects with slow in and slow out
qE) + text fades in onto an object with slow in and slow out
o
.CE’ arcs + dwarves’ limbs move in an arc + objects travel along gentle curves when they are moving non-interactively
E‘:; + Coyote springs up along an arc
follow * Road Runner vibrates for an instant * objects do not come to a sudden standstill, but vibrate at end of motion
through after a quick stop

3 WHY CARTOON-STYLE ANIMATION?

But why employ cartoon-style animation in the user
interface? Why not simply use straight, strictly realistic,
animation? Three characteristics of cartoon animation
explain why it can so effectively inform user interface
design: its theatrical basis, the engagement of its illusion,
and the nature of its artistic medium.

N

Figure 10. When objects come to a stop after
moving on their own, they exhibit follow
through in the form of wiggling back and forth
quickly. This is just suggested by the “wiggle
lines” in the figure—in actuality, the object
moves back and forth, with motion blur.

_—
—

First, cartoons are theatrical. They have license, and even
mandate, to go beyond literal portrayal of the real world in
order to convey their message. So, actions and reactions are
exaggerated, situations are staged, all of the energy of
movement and depiction is calculated to best telegraph the
animator’s point. User interfaces have the same need to
communicate clearly and concisely, and theatricality can
contribute to this goal. (Laurel [12, 13] has explored related
issues of theater and the user interface; her emphasis is on
the treating of the user interface as a two-way theatrical
experience between the user and the computer. Tognazzini
[25] notes correspondences between the theatrical
techniques used in stage magic and that of user interface
design.)

Second, cartoons are engaging. Cartoons create an illusory
world, but effectively absorb the audience into that world.
The mechanics of the cartoon (brightly colored, outlined
shapes in front of largely static backgrounds) are quickly
forgotten, and do not reappear in the audience’s awareness.
The animation techniques employed in the cartoon make the
illusion so complete that even the wackiest events are easy
to grasp by the audience. The audience is never jolted out of
the cartoon world by the need to figure out what is going on.
User interfaces can benefit by becoming more engaging,
fully absorbing the user into its world so that her attention
may be devoted entirely to the task. Users do not feel as if
they are manipulating an interface, but rather as if they are
in direct engagement with the task-domain objects [9].

Finally, the medium of cartoon animation is, in important
ways, remarkably like that of graphics on the computer. The
craft of animation is turning a succession of still drawings
into a dynamic, lively image; animators were the first to



have that total control over each pixel in space at each
instant in time. Computer animation has benefited from the
techniques developed by traditional animators; Lasseter [11]
discusses practical aspects of applying traditional animation
principles to 3D computer animation. User interface
designers as well can draw upon the wealth of experience in
the field of cartoon animation to achieve similar successes
of communication, vibrancy, and illusion.

4 USER INTERFACES ARE NOT CARTOONS

Making user interface objects behave more like cartoon
objects can be beneficial, but user interfaces are not
cartoons. The most important difference between them is
that the cartoon is a passive medium, while the user
interface is an interactive one. Because the user is in control,
the final product must be responsive to the user’s desires.
(For example, motion techniques like slow in and slow out,
anticipation, and follow through in the Self interface are not
imposed upon objects when they are being explicitly moved
by the user.) While the animation should be designed so that
the user will not feel as if he is waiting for it to play out (it
should be both fast enough and engaging enough so that the
user isn’t consciously aware of it), the user may want to
move to the next interaction before an animation finishes. In
those cases, the user should be given immediate control, but
the integrity of the interface should still be maintained by
the principled use of animation techniques. For example,
when user interaction requires a moving object to skip the
rest of its planned movement and go immediately to its
destination, motion blur can still be used to visually connect
the large jump.

Another difference between cartoons and user interfaces are
their purposes. Cartoons are purely for enjoyment and
diversion; user interfaces are usually for getting work done.
Of course, user interfaces should be enjoyable as well, but
its more serious nature usually precludes the employment of
some of the entertainment values of cartoons. Cartoons are
often wacky and silly, and although the techniques that
make the wackiness comprehensible to the audience are the
same that are used to make actions in the user interface
comprehensible to the user, the wackiness itself does not
need to be transferred. For example, cartoons can use
anticipation to set up “surprise gags” [24], by making the
anticipation suggest to the audience one action, while
having a different action actually happen. Such a surprise
can be desirable in cartoons, but would be quite disturbing
in the user interface. The user interface uses the effect of
solidity and physicality from cartoons, but not the affect of
silliness and manic action.

Because a user interface is a tool for doing some task,
animation in it should be as fast as it can be while still
preserving legibility. For example, in moving an object from
one side of the screen to the other, an appreciation of motion
blur makes it possible to accomplish this in only two frames.
(Like the Road Runner exiting stage left.) When used in this
fashion, animation may actually speed up an interface, by
reducing the time it takes a user to perform and comprehend
an action.

5 IMPLEMENTATION NOTES

One goal of the Self user interface effort is to explore use of
these animation techniques in a practical setting— which
means using stock graphics hardware while at the same time
ensuring the high performance necessary for interactive use.
To achieve the interactive speeds of 20 to 30 frames per
second without special hardware support, we use colormap
animation—colormap cycling for dissolves, colormap
overlays for moving objects, and colormap double-buffering
for moving arrows [4, 18]. We chose to accept the limited
number of colors that results from the use of colormap
animation techniques as a trade-off for high performance.

The 8-bit colormap is divided into four parts: a 3-bit
“stationary” layer, a 3-bit “moving” layer, and two single-bit
“arrow” layers. Moving animations are carried out by
elevating the animated object to the moving layer. For
example, when a user grabs an object and moves it around
on the screen, the moving object is drawn only on the
moving layer; as it is moved about, its vacated locations are
filled in with a “transparent” color that allows the stationary
layer to show through. Dissolves are handled by cycling
through colormaps that change the transparency of the
moving layer.

Arrows are a special case. Arrows connected to a moving
object are drawn on their own layer, again allowing quick
erasing with a transparent color. Since there may be many
arrows attached to a moving object, it is important to be able
to efficiently erase and redraw many arrows at once. To
prevent flickering, the arrows are double-buffered via the
colormap; thus the two arrow layers.

As mentioned above, a drawback to using colormap
manipulations for animation is that it can severely limit the
number of colors available. For example, although an 8-bit
framebuffer supports 256 colors, the above architecture
limits the Self user interface to seven colors for general use,
one color for background, and one color for arrows. A
separate limitation of this architecture is that, although more
than one thing can be animated at once, spatially
overlapping animations are not directly supported.

Some user testing of the animation in the Self user interface
has been carried out. Most of the users fall into one of two
categories: those who immediately notice the use of
animation, and are generally delighted; and those who seem
to take the animation for granted from the start. The latter
tend to be people who are less involved in the computer
field, which suggests that such animations conform
reasonably well to natural experience and expectations.
Observations of users also show that inconsistencies in the
animation or performance glitches can suddenly wreck the
illusion of the interface and draw attention to the animation
itself. Perhaps because animated objects seem more real,
defects in their behavior can be more disturbing and
disruptive than a defect in an unanimated object. Further
study is needed to more fully determine what are the useful
boundaries of animation in the user interface, and the effect
of animation as the user becomes more experienced with the
system.



6 CONCLUSION

The benefits of applying techniques from cartoon animation
to the user interface are both cognitive and affective. By
making it easier for the user to track objects and understand
what is changing on the screen, animation offloads some of
the cognitive burden associated with deciphering what is
going on in the interface from higher cognitive centers to the
periphery of the nervous system. By eliminating flashes as
the contents of the screen change suddenly, animation
makes the interface less startling and thus makes the user’s
experience more pleasant. By presenting a physical world in
which motion is realistic and convincing, animation engages
the user, keeping her in the world, concerned with the task
and not the mechanics of the interface.

We showed how the principles of animation could be
applied to one user interface, interacting with objects in the
Self world. These techniques are widely applicable, and
may have additional benefits in certain kinds of interfaces.
In particular, collaborative applications stand to benefit
greatly from the use of this kind of animation: in addition to
the user’s own actions, remote users often will initiate
actions, so the user may not even have the advantage of
expecting something to happen. Anticipation, slow in and
slow out, motion blur, and follow through can be used to
more fully and more gently inform the user about remotely
initiated actions.

Cartoon animation goes far beyond static presentations and
even beyond straight animation in elucidating action in the
interface. The animation doesn’t have to be slow, or
distracting, or silly; on the contrary, with careful tuning,
cartoon animation can turn the user interface into an
understandable, engaging, and pleasurable experience.

ACKNOWLEDGMENTS

The Self group, including Ole Agesen, Lars Bak, Craig
Chambers, Urs Holzle, John Maloney, and Randy Smith,
provided valuable feedback and discussion during the
ongoing process of refining the animation techniques used
in the Self user interface. In particular, Randy Smith and his
reality deserves credit for originally putting our feet on the
path of a concrete, object-based interface. Chuck Clanton
set us thinking about the importance of affect in the
interface. John Tang first pointed out to us the value of these
animation techniques in the setting of collaborative
applications.

This work has been supported by Sun Microsystems
Laboratories, an NFS Graduate Fellowship, NFS PYI Grant
#CCR-8657631, IBM Powell Foundation, Apple, Cray,
Tandem, NCR, TI, and DEC.

REFERENCES

1. Baecker, R. and Small, I. Animation at the interface. In
B. Laurel, The Art of Human-Computer Interface
Design, Addison-Wesley, New York, 1990.

2. Baecker, R., Small, I., and Mander, R. Bringing icons to
life. CHI ’91 Conference Proceedings, 1991, 1-6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Bocker, H.-D. and Herczeg, J. Track— A trace construc-
tion kit. CHI 90 Conference Proceedings, 1990, 415-
422.

Booth, K.S. and MacKay, S.A. Techniques for frame
buffer animation. Graphics Interface ’82 Conference
Proceedings, 1982, 213-223.

Brown, M.H. Perspectives on algorithm animation. CHI
’88 Conference Proceedings, 1988, 33-38.

Card, S K., Robertson, G.G. and Mackinlay, J.D. The
Information Visualizer, an information workspace. CHI
"91 Conference Proceedings, 1991, 181-188.

Donoho, A.W., Donoho, D.L.. and Gasko, M. MacSpin:
Dynamic graphics on a desktop computer. /EEE Com-
puter Graphics and Applications, 8(4), 1988, 51-58.

Duisberg, R.A. Animation using temporal constraints:
An overview of the Animus system. Human-Computer
Interaction, 3(3), 1987-1988, 275-307.

Hutchins, E.L., Hollan, J.D. and Norman, D.A. Direct
manipulation interfaces. In D. Norman & S. Draper,
User Centered System Design. Lawrence Erlbaum,
Hillsdale NJ, 1986, 87-124.

Jones, C. Chuck Amuck: The Life and Times of an Ani-
mated Cartoonist. Farrar Straus Giroux, New York,
1989.

Lasseter, J. Principles of traditional animation applied
to 3D computer animation. SSGGRAPH ’87 Conference
Proceedings, 1987, 35-44.

Laurel, B. Interface as mimesis. In D. Norman & S.
Draper, User Centered System Design. Lawrence
Erlbaum, Hillsdale NJ, 1986, 67-85.

Laurel, B. Computers as Theatre. Addison-Wesley,
New York, 1991.

Mackinlay, J.D., Robertson, G.G. and Card, S.K. The
Perspective Wall: Detail and context smoothly inte-
grated. CHI ’91 Conference Proceedings, 1991, 173-
179.

Microsoft Corporation. Microsoft Windows for Work-
groups Version 3.1 User’s Guide. Microsoft Corpora-
tion, 1992.

Palmiter, S. and Elkerton, J. An evaluation of animated
demonstrations for learning computer-based tasks. CHI
"91 Conference Proceedings, 1991, 257-263.

Robertson, G.G., Mackinlay, J.D. and Card, S.K. Cone
Trees: Animated 3D visualizations of hierarchical infor-
mation. CHI ’91 Conference Proceedings, 1991, 189-
194.

Shoup, R. Color table animation. SIGGRAPH 79 Con-
ference Proceedings, 1979, 8-13.

Smith, R.B. The Alternate Reality Kit: An animated
environment for creating interactive simulations. Pro-
ceedings of the 1986 IEEE Computer Society Workshop
on Visual Languages, 1986, 99-106.



20.

21.

22.

23.

24.

25.

26.

217.

Smith, R.B. Experiences with the Alternate Reality Kit:
An example of the tension between literalism and
magic. CHI+GI ’87 Conference Proceedings, 1987, 61-
67.

Stasko, J.T. Using direct manipulation to build algo-
rithm animations by demonstration. CHI ’91 Confer-
ence Proceedings, 1991,307-314.

Sukaviriya, P. Dynamic construction of animated help
from application context. UIST ’88 Conference Pro-
ceedings, 1988, 190-202.

Sukaviriya, P. and Foley, J.D. Coupling a Ul framework
with automatic generation of context-sensitive animated
help. UIST 90 Conference Proceedings, 1990, 152-
166.

Thomas, F. and Johnston, O. Disney Animation: The
1llusion of Life. Abbeville Press, New York, 1981.

Tognazzini, B. Principles, techniques, and ethics of
stage magic and their application to human interface
design. INTERCHI ’93 Conference Proceedings, 1993,
355-362.

Ungar, D. and Smith, R. Self: The power of simplicity.
OOPSLA ’87 Conference Proceedings, 1987,227-241.

Williams, G. The Apple Macintosh Computer. Byte,
9(2), 1984, 30-54.



