
To be published in: LISP AND SYMBOLIC COMPUTATION: An International Journal, 4, 3, 1991
© 1991 Kluwer Academic Publishers - Manufactured in The Netherlands

Parents are Shared Parts of Objects:
Inheritance and Encapsulation in SELF*

CRAIG CHAMBERS
DAVID UNGAR†

BAY-WEI CHANG
URS HÖLZLE (self@self.stanford.edu)

Computer Systems Laboratory, Stanford University, Stanford, California 94305

Abstract. The design of inheritance and encapsulation in SELF, an object-oriented language based
on prototypes, results from understanding that inheritance allows parents to be shared parts of their
children. The programmer resolves ambiguities arising from multiple inheritance by prioritizing an
object’s parents. Unifying unordered and ordered multiple inheritance supports differential
programming of abstractions and methods, combination of unrelated abstractions, unequal
combination of abstractions, and mixins. In SELF, a private slot may be accessed if the sending
method is a shared part of the receiver, allowing privileged communication between related objects.
Thus, classless SELF enjoys the benefits of class-based encapsulation.

1 Introduction

Inheritance is a basic feature of most object-oriented languages. Many of these
languages are based on classes and use inheritance to allow a class to obtain
methods and instance variables [26]. (Sometimes classes and inheritance are also
used to specify type compatibility.) Within the last few years, however, there have
been several proposals for languages based on prototypes [3, 9, 10, 12, 22, 25].
These languages do not include classes but instead allow individual objects to
inherit from (or delegate to) other objects. The issues surrounding inheritance and
encapsulation need to be revisited when designing such a language.

This paper describes the inheritance and encapsulation mechanisms we designed
and implemented in one prototype-based language, SELF [4, 5, 11, 25]. Our design

*This work has been generously supported by National Science Foundation Presidential Young
Investigator Grant #CCR-8657631, and by Sun Microsystems, IBM, Apple Computer, Cray Labora-
tories, Tandem Computers, NCR, Texas Instruments, and DEC.

†Author’s present address: Sun Microsystems, 2500 Garcia Avenue, Mountain View, CA 94043.

22 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

is based on the philosophy that an object’s parents should be treated as shared parts
of the object, and that inheritance should be a simple, declarative way to maximize
the possibilities for sharing. This paper describes two heretofore unpublished inno-
vations: a prioritized multiple inheritance scheme that unifies unordered and
ordered multiple inheritance, and an object encapsulation model that provides
many of the benefits of class-based encapsulation in a language without classes. In
addition, our inheritance system supports directed and undirected resends to
forward messages to an object’s ancestors, a unique sender path tiebreaker rule
that resolves many ambiguities between unrelated unordered parents, and dynamic
inheritance, which allows an object to change its parents at run-time to effect
significant behavioral changes due to changes in its state.

1.1 The Benefits of Inheritance
We feel that there are two reasons to include inheritance in a dynamically-typed

language like SELF: malleability and reusability.1 Inheritance allows the behavior
common to a set of objects to be factored out into a single shared object, such as a
superclass. As a result, the behavior of every object in the set may be changed with
only a single change to the shared object. This malleability facilitates program
construction, maintenance, and extension.2

Inheritance encourages the reuse of code and data by allowing the programmer
to write new abstractions in terms of existing abstractions. By separating out poten-
tially reusable pieces of code or protocol when implementing an abstraction, other
abstractions may be able to share the code and avoid duplicating programming
effort. This style of programming is called differential programming and is one of
the most powerful features of object-oriented systems. Programmers need only
write the differences from existing code when defining new abstractions; the rest
of the code may be shared among the old abstractions and the new abstraction.
Improvements to one abstraction automatically propagate to every abstraction that
shares the behavior, further amplifying the programmer’s power.

1.2 Guiding Principles for the Design of Inheritance in SELF

The common theme in malleability and reusability is sharing: one object is
shared by other objects, promoting malleability and providing for reusability.
Inheritance is just a declarative way of specifying which objects are shared by
which other objects. One guiding principle of our design for inheritance in SELF,
then, is that an object’s parents are treated as shared subparts of the object.

1In languages with static type systems, there may be other reasons to include inheritance, such as
to declare type hierarchies for type checking. We concern ourselves here only with inheritance as a
code sharing mechanism.

2An alternate approach would be to provide a mechanism to visit every object in some set, and
automatically perform the change to each object in the set. This approach has been explored by other
researchers [6, 19].

INHERITANCE AND ENCAPSULATION IN SELF 23

This view of inheritance provides a natural explanation for many aspects of an
object-oriented language. The rules for message lookup can be easily derived from
the (simpler) rules for message lookup in the absence of inheritance by treating the
message receiver’s parents as part of the receiver. This view even explains one of
the most basic ideas of object-oriented programming: the meaning of self within a
method. If there were no inheritance, self would refer to the receiver object holding
the method. With inheritance, since inherited methods are considered to be shared
parts of the receiver, the method being invoked is part of the same receiver object.
Therefore, self always refers to the receiver of the message, even for inherited
methods.

Another guiding principle of our inheritance system is to support as much
sharing of objects as possible in order to maximize the malleability and reusability
of SELF programs. Unfortunately, powerful inheritance schemes have been notori-
ously difficult to use effectively. This is especially true for those that automatically
resolve ambiguities between multiply-inherited conflicting behavior, often
confusing users with unexpected but “correct” behavior. Thus, the power of inher-
itance must be balanced against its complexity and its potential to confound intu-
ition.

1.3 Basic SELF Object Model
An object in SELF contains a set of named slots, each slot containing a reference

to another SELF object. A method in SELF is an object that additionally contains
code to execute when invoked; a method object is viewed as a prototypical activa-
tion record, and its slots are its arguments and local variables. An object may allow
assignments to a data slot by associating an assignment slot with the data slot. New
objects are created by cloning (shallow-copying) pre-existing objects. For a more
complete description of SELF’s syntax and object model, see [5, 11, 25].

In the absence of inheritance, message lookup in SELF is handled by searching
the receiver for a slot that matches the message name and evaluating the contents
of the matching slot (or generating a messageNotUnderstood error if there is
no matching slot). Evaluating a method executes its associated code. Evaluating a

P

C1 C2

C2C1

P Pshared

Parents are Shared Parts of their Children

24 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

simple data object just returns the data object itself. Since there is no way in SELF
to access state other than by sending messages, state access is unified with method
invocation; this guarantees that SELF code is always representation-independent.

2 Prioritized Multiple Inheritance

SELF’s inheritance system supports multiple inheritance by allowing an object to
have more than one parent. Most modern object-oriented systems support some
form of multiple inheritance, since it offers significantly more possibilities for
sharing than simple single inheritance. But multiple inheritance introduces a new
complexity: two or more parents may define slots with the same name.

2.1 Ordered vs. Unordered Multiple Inheritance
Previous languages belong to one of two camps in handling this name clash

problem. Some languages, like New Flavors [16], CommonLoops [2], and CLOS
[1], rank an object’s parents, and automatically resolve the ambiguity in favor of
the slot inherited from the highest-ranked parent. We call this approach ordered
inheritance. Ordering an object’s parents works best when the object is more like
one parent than the others, or when programming using shared mixins which are
designed to override behavior “from the side.”

In addition to ordering, these languages linearize the inheritance graph,
constructing a total ordering of all classes that is consistent with each class’ local
total ordering, defined as the class followed by its direct superclasses in order. An
error results if there is no global total ordering that is consistent with each class’
local total ordering. Linearization has two drawbacks: it masks ambiguities
between otherwise unordered ancestors, and it fails with inheritance graphs that it
deems inconsistent.

The opposite approach to resolving ambiguities among an object’s parents is to
leave it up to the programmer. Languages like Trellis/Owl [17, 18], Eiffel [14, 15],
C++ version 2.0 [23, 24], and CommonObjects [20, 21] treat an object’s parents as
equals without a relative ordering and treat ambiguities as programming errors that
need to be explicitly resolved by the programmer.3 We call this approach unordered
inheritance. It works best when combining relatively equal parents or unrelated
parents, since any ambiguities are likely to need explicit resolution by the
programmer. Artificially ordering equal parents would mask these ambiguities,
introducing subtle and obscure errors in programs.

3C++ orders superclasses to invoke constructors and destructors but not to resolve virtual function
calls.

INHERITANCE AND ENCAPSULATION IN SELF 25

2.2 Prioritized Parents
Both approaches have their advantages and disadvantages. We have developed a

simple new approach that combines ordered and unordered multiple inheritance,
even within the same object. Each of an object’s parents has an associated priority.
Parents at different priority levels are ordered, with the higher-priority parents’
slots taking precedence over the lower-priority parents’ slots if any names clash.
Parents at the same priority level are unordered with respect to each other, and
accesses to any clashing slot definitions will generate an ambiguous message error.
Priorities allow the programmer to make the best choice for each situation.

To support prioritized multiple inheritance, the receiver’s parents are treated as
shared subparts; the parent objects are themselves extended with their parents’
slots, and so on. If an object and one of its ancestors define slots with the same
name, then the object’s slot takes precedence over the ancestor’s slot; this imple-
ments the standard rule that an object may override its ancestors’ slots. If two of an
object’s parents define (or inherit) slots with the same name, then the slot from the
higher-priority parent takes precedence; if both parents are of the same priority
(i.e., unordered), then the system generates a messageAmbiguous error on
access to the slot. An ancestor’s slots are only included once, no matter how many
paths lead from the receiver to the ancestor, so an object won’t generate ambigu-
ities with its own slots if it is inherited along several paths. This rule also handles
cycles in the inheritance graph, since inheriting an ancestor repeatedly in a cycle
has the effect of including it just once.

An object’s parents are found in its parent slots, which are normal data slots that
have been marked with a parent priority.4 If a parent slot is assignable, an object
may change that parent by assigning to its slot. This feature is called dynamic
inheritance.

2.3 Sender Path Tiebreaker Rule
SELF incorporates a unique feature that frequently resolves ambiguities when

inheriting equally from two unrelated abstractions. If a method in an object sends
a message to self, it expects to find the matching slot in one of the object’s descen-
dants or one of its ancestors. This corresponds to the method invoking one of the
methods defined in a more general abstraction (an ancestor) or in a refining abstrac-
tion (a descendant). However, if a descendant of the object containing the method
uses unordered multiple inheritance to combine the object with an otherwise unre-
lated object that happened to define a matching slot, then the message would
become ambiguous. To resolve such ambiguities, SELF’s inheritance rules addi-
tionally specify that if two slots with the same name are defined in equal-priority

4Priorities are syntactically indicated by adding one or more asterisks (*) after the slot name, with
more asterisks indicating lower priority (the asterisks are more like footnote-style asterisks than
movie ratings).

26 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

parents of the receiver, but only one of the parents is an ancestor or descendant of
the object containing the method that is sending the message (the sending method
holder), then that parent’s slot takes precedence over the other parent’s slot.

This sender path tiebreaker rule automatically resolves ambiguities between
unrelated abstractions if the sender of the message is part of one abstraction but not
the other. An ambiguity may be resolved in favor of one parent for one message
send, and in favor of another parent for a different message send, depending on the
location of the sending method holder. This dynamic behavior would be difficult to
program explicitly without changing the slot names of one of the inherited abstrac-
tions.

The sender path tiebreaker rule is unique to SELF. Trellis/Owl, C++, and
CommonObjects can obtain similar results in some cases by statically binding calls
to private members. This approach is inferior to a general sender path tiebreaker
rule because it fails to disambiguate references to public and subclass-visible
(protected) members.

receiver

sending
method holder

object with

on path

Sender Path Tiebreaker Rule

senderpath

matching slot
object with

off path
matching slot

INHERITANCE AND ENCAPSULATION IN SELF 27

2.4 Resends and Directed Resends
To support differential programming at the method level, many object-oriented

languages include a resend mechanism that allows a method to be written as a vari-
ation of the method it overrides, invoking the overridden method as part of the
overriding method. In SELF, a method may “continue the lookup” to find the next
matching slot that the resending method is overriding by prefixing the name of the
message with the reserved word resend followed by a period; for instance,
resend.clone resends the clone message, finding whatever clone slot this
method overrides. These resends may be chained, with one method doing a resend
to call an overridden method, which in turn does another resend, and so on. A
single method may do any number of resends, and although the receiver of a resend
must be self, each resend may have a different message name and different argu-
ments from the resending method.

SELF also includes a variant of the resend mechanism that directs the message
lookup only to one of an object’s parents instead of to all of them. This directed
resend is normally used to explicitly resolve ambiguities among an object’s
parents. Syntactically, directed resends are specified by prefixing the name of the
message with the name of one of the sending method holder’s parent slots followed
by a period, analogous to normal resends specified using the resend reserved
word (since resend is reserved, it can’t be mistaken for the name of a parent slot).
For example, clonableTraits.clone resends the clone message to the
parent object referenced by the clonableTraits parent slot of the sending
method holder. Directed resends are not a general delegation mechanism because
they can only be directed to parents of the sending method holder. General delega-
tion (i.e., starting the message lookup with an arbitrary object) is provided in SELF
using special primitives.

Flavors, CommonLoops, and CLOS use method combination rules to handle the
case where multiple classes define methods with the same name. The standard
method combination rules in CLOS support call-next-method, which is
similar to SELF’s undirected resend, except that call-next-method does not
allow the programmer to change the name of the message. The standard method
combination rules include combinations not provided by SELF, for example,
:before and :after dæmons and :around methods. Users may even write
their own method combination rules. This approach is more powerful and flexible
than our inheritance rules. However, we want SELF’s inheritance rules to be
simple; we feel that the added expressiveness of user-definable method combina-
tion would be outweighed by the extra complexity in the language.

In most languages with unordered inheritance, ambiguities must be resolved stat-
ically. Eiffel forces programmers to rename inherited features to either disambig-
uate or resend to them. Trellis/Owl allows programmers to select one of the inher-
ited definitions using the inherit clause. Trellis/Owl, C++, and CommonOb-

28 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

jects also support mechanisms similar to SELF’s directed resends. None of these
languages support undirected resends and so must cope with three problems:

• Directed resends may mask ambiguities that would be caught using undirected
resends.

• Directed resends may need to be changed if the names of an object’s parents
are changed or if the inheritance hierarchy is changed.

• Directed resends may not be used in mixins, where the method invoked by the
resend differs depending on what objects are mixed in at a lower priority.

In BETA [8, 13], virtual functions are invoked from least specific to most
specific, with the keyword inner being used to invoke the next more specific
method. This mechanism is a product of the philosophy in BETA that subclasses
should be behavioral extensions to their superclasses and therefore specialize the
behavior of their superclasses at well-defined points (i.e. at calls to inner). It is
much more restrictive than SELF’s resend mechanism.

2.5 Complexities with Ordered Multiple Inheritance
Ordered multiple inheritance is quite powerful, supporting both unequal multiple

inheritance and mixins. These programming techniques are very useful, and we
make significant use of them in our own SELF code. However, the power of ordered
multiple inheritance has a few hidden drawbacks, and the effects of ordering
parents can occasionally surprise novice and expert SELF programmers alike.

2.5.1 Ordered Multiple Inheritance, Mixins, and Resends
One consequence of using higher-priority parents to implement mixins in SELF

is that these mixin objects should almost always be defined with no parents. Other-
wise, the slots of the mixin’s ancestors, no matter how general, would override any
slots in lower-priority parents, no matter how specific. For example, if a mixin
inherited print1 from some default behavior traits object, then this default
behavior would override any specific behavior of the lower-priority parent such as
print2. This is almost never what the programmer intends. Once bitten, however,
the programmer learns to leave mixins parentless to prevent them from mixing in
more behavior than expected.

Another potentially surprising effect of ordering an object’s parents is that a
chain of resends may eventually “backtrack” and call a method defined in a lower-
priority parent of a descendant of the sending method holder, if no more ancestors
of the descendant’s higher priority parent contain matching slots. Continuing the
example, a resend from print1 would invoke print2. This is a desirable feature
of ordered multiple inheritance and resends, since it allows mixins to invoke the
methods that they override, which are defined in lower-priority “cousins.”
However, backtracking to lower-priority branches may surprise the novice
programmer in other situations, especially if the lower-priority branch is a child of
the resending method.

INHERITANCE AND ENCAPSULATION IN SELF 29

We are considering altering SELF’s lookup rules to always search children before
their ancestors, even if the children are on lower-priority paths than the ancestors;
Flavors and CLOS use a similar rule when linearizing classes. This would have the
effect of using the declared priorities to break ties between parents left unordered
by the inheritance graph. Both of the problems described above would be remedied
by this change. In the example above, print2 would be found before print1,
and resends in print1 would never invoke print2.

2.5.2 Ordered Multiple Inheritance, Resends, and Dynamic Inheritance
Ordered multiple inheritance, resends, and dynamic inheritance have complex

interactions. Dynamic inheritance does not normally affect message lookup, since
assignable parents cannot change while a message send is being handled. However,
they may change between resends within a chain of resends. This would not be a
problem in a system with single inheritance or unordered multiple inheritance,
since the message lookup could always begin with the resending method holder’s
parents and proceed upwards. But with the introduction of ordered multiple inher-
itance, a resend might have to backtrack to a lower-priority parent of a descendant
of the resending method holder to find the next matching slot. If a parent between
the receiver and the resending method holder were changed between resends, it
would be difficult to determine what the next matching slot should be, especially if
the resending method holder were no longer an ancestor of the receiver at all.

SELF’s current rules for resends in the face of dynamic inheritance are complex
to explain and to implement. It has become the “tar baby” of SELF’s inheritance
system, illustrating the potential dangers of combining seemingly well understood,
innocuous language features. We are actively debating possible solutions.

receiver

Problems with SELF’s Priorities and Mixins

low-priority parentprint2

print1 default traits object

high-priority parent

30 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

2.6 Inheritance Rules as a Partial Order on Ancestors
The lookup rules for inheritance define a partial order on the receiver and its

ancestors, derived from the inheritance graph, the receiver, and the sending method
holder. This order is defined according to the following rules:

• An object’s higher priority parents (and their ancestors) are ordered before the
object’s lower priority parents [priorities].

• One object is ordered before another if they are left unordered by the previous
rule and all paths in the inheritance graph from the receiver to the second object
pass through the first object [children before ancestors].

• One object is ordered before another if they are left unordered by the previous
two rules and the first object lies on the sender path while the second does not
[sender path tiebreaker]. An object lies on the sender path if the sending
method holder is an ancestor of the receiver, and if the object either lies on a
path in the inheritance graph from the receiver to the sending method holder or
is an ancestor of the sending method holder.

This partial order is used to determine the results of message lookups. Normal
lookups search the nodes in the partial order for ancestors that contain slots that
match the name of the message. If no matching slot is found, then the message is
not understood. If there is no single greatest ancestor containing a matching slot
(ancestors earlier in the partial order are considered greater than those later in the
partial order), then the message is ambiguous. Otherwise the greatest ancestor
containing a matching slot is the result of the lookup, and the contents of the
matching slot is evaluated as the result of the message. Resends are similar to
normal lookups, but they only search ancestors in the partial order that are less than
the resending method holder; if the resending method holder is not in the partial
order (because it has been spliced out by dynamic inheritance), then the message is
not understood. Directed resends are like resends, except that all parent slots of the
resending method holder except the one being directed through are ignored when
constructing the partial order.

The rules described above fail to cope with cycles in the inheritance graph. While
it appears possible to accurately model SELF’s treatment of cycles, doing so would
complicate the rules so much that they would no longer be useful in understanding
the normal acyclic situation. This difficulty indicates a need to revisit our treatment
of cycles, perhaps by making all ancestors in a cycle mutually incomparable (or
equivalently, by treating the inheritance graph as a preorder, in which all ancestors
in a cycle are equal).

This partial ordering is different from the linearization used in Flavors and
CLOS. Their linearizations are total orders performed once for the entire system.
Our ordering is partial (so that real ambiguities are not resolved arbitrarily by the
system) and is (conceptually) constructed dynamically for each message send;
different receivers may have different “views” of the ordering of objects in the

INHERITANCE AND ENCAPSULATION IN SELF 31

inheritance hierarchy, and different message send sites may have different
constructed partial orders because of the sender path tiebreaker rule.

3 Encapsulation

Inheritance in SELF as defined so far does not support data abstraction and infor-
mation hiding very well. Any object may send any message to any other object; as
long as a matching slot is found, its referent is evaluated. Such unrestricted
message passing prevents an object from maintaining local invariants about its
data, since any other object can invoke its assignment slots freely. In addition, unre-
stricted access to slots camouflages an object’s external interface. Lacking the
means to distinguish between an object’s internal implementation and its external
interface, an object’s clients may invoke an operation that was intended to be for
internal use only, creating an unwanted coupling between the clients and the
object’s implementation. These problems may not be serious for an individual’s
exploratory programming—in fact unrestricted access may be desirable—but they
hinder the construction of more permanent, reusable abstractions.

3.1 Visibility Declarations
SELF allows individual slots to be declared either public or private; a slot with

no such declaration is said to be unspecified. Public slots, prefixed with a circum-
flex (^), are part of the external interface of an abstraction and may be invoked by
messages from any object. Private slots, prefixed with an underscore (_), are invis-
ible to other objects.

Since assignment slots are declared simultaneously with their corresponding data
slots, a ^ or _ declaration applies to both the data slot and the assignment slot.
Frequently the programmer may want the data slot to be publicly accessible while
protecting the assignment slot. To specify mixed-mode declarations, the SELF
programmer may prefix a data slot/assignment slot declaration pair with ^_
(meaning public data slot and private assignment slot) or _^ (meaning private data
slot and public assignment slot). Trellis/Owl and CommonObjects also support
different visibility declarations for data access and assignment. This construct
makes it easy for the programmer to limit either access or modification of data as
appropriate.

Unspecified slots, with no prefix, act like public slots, but the connotations to
SELF programmers are different. During rapid development of code, it may be
convenient to ignore encapsulation issues until the abstractions become more
mature; visibility declarations can just be left off, making all slots accessible. Then,
as code solidifies, slots may be annotated with public and private declarations to
better define the external interfaces.

32 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

We have deliberately chosen a terse, per-slot syntax to make it as easy as possible
for the programmer to add and modify visibility declarations. Some slots may
remain unspecified, either because the implementor has not yet decided whether
the slot should be public or not, or because access is required for some cooperating
abstraction, but the slot should not be generally considered part of the external
interface to the abstraction. This distinction between unspecified scope and public
scope is a unique feature of SELF designed to support both exploratory and produc-
tion programming.

3.2 The Meaning of Privacy
Existing encapsulation systems are either object-based or module-based (class-

based). For example, the Smalltalk-805 language [7] provides object-based encap-
sulation of instance variables, meaning that a method may only access the instance
variables of self. Trellis/Owl and Eiffel use object-based encapsulation for both
instance variables and methods. Unfortunately, object-based encapsulation alone is
too restrictive. Consider a method to add two points, which must create a new point
and set its x and y slots. Since the new point is not the same as self, there must be
a public method to set x and y. Module-based encapsulation, on the other hand,
allows code defined within a module or class to access the private methods and data
of any object of the module, enabling many more internal operations to be declared
private. C++ is an example of a language that uses module-based encapsulation.
Module-based encapsulation is a minimum level of encapsulation needed for real-
istic programs to protect their private data and operations from outsiders without
unduly restricting internal access.

How can SELF, a language without explicit modules or classes, support module-
based encapsulation? The guiding principle that parents are shared parts leads to a
surprising but logical solution: since a method is shared by all objects that inherit
the method, the method should have access to the private slots of every object that
shares (inherits) it. The shared ancestor object defining the method thus forms its
own “module” of sorts, since its methods may access the private slots of any of its
descendants. Consequently, the scope of a private slot is large enough to allow most
slots that shouldn’t be part of the public interface to be declared private.

The complete rule for private slot accesses is that a private slot is accessible if
both the sending method and private slot are in objects that are the same as or
ancestors of the receiver, that is, if the objects holding the sending method and the
private slot are shared subparts of the receiver. In the case of adding two points, the
addition method is in a parent of—in other words, is a part of—the new point, and
the private slots x: and y: are in the new point, so the access would be permitted.
Encapsulation in SELF provides the benefits of class-based or module-based encap-
sulation without requiring the existence of explicit classes or modules. These

5Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

INHERITANCE AND ENCAPSULATION IN SELF 33

advantages are a direct consequence of the consistent treatment of parents as shared
parts of objects.

One property of these rules is that an object may gain access to any private slot
by becoming a child of the object with the private slot. In the presence of dynamic
inheritance, it becomes difficult to statically determine all objects that may be chil-
dren of an object with a private slot, preventing air-tight proofs that the invariants
of an implementation are maintained. In practice, this has not been a problem, but
we continue to investigate ways to support static reasoning about encapsulation in
the presence of dynamic inheritance.

In SELF, private slots are visible to any children, since parents are shared parts.
Other languages provide the programmer with more choices. Trellis/Owl, C++, and
CommonObjects also enable the programmer to hide members from subclasses.
C++ supports friend classes and methods that have access to a class’ private
members, useful for cooperating abstractions. Similarly, Eiffel allows members to
be selectively exported to a list of cooperating abstractions; this feature may be
used to overcome Eiffel’s object-based encapsulation model, at some cost in
verbosity.

4 Conclusion

Inheritance confers its benefits of malleability and reusability by supporting
sharing while minimizing unexpected surprises. Accordingly, SELF’s design is
based on interpreting an object’s parents as shared parts of the object. SELF’s inher-
itance system introduces prioritized multiple inheritance, a simple way to describe
both unordered multiple inheritance and ordered multiple inheritance, and provides
three ways to resolve ambiguities. The sender path tiebreaker rule automatically
resolves ambiguities that are almost certainly caused by accidental naming
conflicts between unrelated ancestors of an object. Directed resends resolve ambi-
guities among an object’s parents for a particular message by resending the

Access allowed Access denied

receiver

sending
method holder

receiver

object with
private slot

sending
method holder

object with
private slot

34 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

message to one of the object’s parents. Parent priorities resolve ambiguities among
an object’s parents for all messages by ranking the object’s parents. For the most
part, these mechanisms are simple and intuitive; unfortunately, the combination of
ordered inheritance and resends sometimes leads to surprising behavior. Unlike
previous multiple inheritance schemes, prioritized multiple inheritance supports a
wide range of uses: differential programming of abstractions and methods, combi-
nation of unrelated abstractions, unequal combination of abstractions, and mixins.
No other language supports all of these programming techniques as well.

SELF incorporates encapsulation to assist programmers in identifying an object’s
public interface and in reasoning about the behavior of a module without exam-
ining all of its clients. The syntax has been carefully chosen to encourage program-
mers to use it: it is concise, it treats each slot independently, it separates access from
assignment, and it allows a slot’s visibility to remain unspecified. Unspecified slots
free the programmer from making public declarations while engaged in explor-
atory programming. As an object’s interface becomes more defined, it can be anno-
tated gradually with visibility declarations. This smooth transition is unique to
SELF. Considering parents as shared parts has led to powerful encapsulation
semantics. A method may access a private slot if both the method and the private
slot can be considered to be part of the receiver. This definition allows most of the
slots that should be private to be declared private. SELF is the first prototype-based
language to provide the benefits of module-based encapsulation.

There are three lessons from this work: inheritance allows an object to be in two
places at the same time, neither ordered nor unordered multiple inheritance is suffi-
cient unto itself, and a language need not include classes to gain the benefits of
class-based encapsulation.

5 Acknowledgments

Randy Smith co-designed the original SELF language with the second author
(before prioritized multiple inheritance and encapsulation), and continues to be a
useful sounding board for new ideas. Peter Deutsch provided much inspiration for
the pursuit of SELF. Elgin Lee helped in the early design and implementation of
prioritized multiple inheritance. Martin Rinard provided valuable suggestions for
the section on inheritance as a partial order on ancestors.

References

1. Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E., Kiczales, G.,
and Moon, D. A. Common Lisp Object System Specification. Published as
SIGPLAN Notices, 23, 9 (1988).

INHERITANCE AND ENCAPSULATION IN SELF 35

2. Bobrow, D. G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdybel,
F. CommonLoops: Merging Lisp and Object-Oriented Programming. In
OOPSLA ’86 Conference Proceedings. Published as SIGPLAN Notices, 21,
11 (1986) 17-29.

3. Borning, A. H. Classes Versus Prototypes in Object-Oriented Languages. In
Proceedings of the ACM/IEEE Fall Joint Computer Conference (1986) 36-
40.

4. Chambers, C., and Ungar, D. Customization: Optimizing Compiler Technol-
ogy for SELF, a Dynamically-Typed Object-Oriented Programming Lan-
guage. In Proceedings of the SIGPLAN ’89 Conference on Programming
Language Design and Implementation. Published as SIGPLAN Notices, 24, 7
(1989) 146-160.

5. Chambers, C., Ungar, D., and Lee, E. An Efficient Implementation of SELF,
a Dynamically-Typed Object-Oriented Language Based on Prototypes. In
OOPSLA ’89 Conference Proceedings. Published as SIGPLAN Notices, 24,
10 (1989) 49-70. Also to be published in Lisp and Symbolic Computation, 4,
3 (1991).

6. Cunningham, W. Objects without inheritance. Personal communication
(1989).

7. Goldberg, A., and Robson, D. Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley, Reading, MA (1983).

8. Kristensen, B. B., Madsen, O. L., Møller-Pedersen, and Nygaard, K. The
BETA Programming Language. In Shriver, B., and Wegner, P., editors, Re-
search Directions in Object-Oriented Programming, The MIT Press, Cam-
bridge, MA (1987).

9. LaLonde, W. R. Designing Families of Data Types Using Exemplars. In ACM
Transactions on Programming Languages and Systems, 11, 2 (1989) 212-
248.

10. LaLonde, W. R., Thomas, D. A., and Pugh, J. R. An Exemplar Based Small-
talk. In OOPSLA ’86 Conference Proceedings. Published as SIGPLAN Notic-
es, 21, 11 (1986) 322-330.

11. Lee, E. Object Storage and Inheritance for SELF, a Prototype-Based Object-
Oriented Programming Language. Engineer’s thesis, Stanford University
(1988).

12. Lieberman, H. Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems. In OOPSLA ’86 Conference Proceedings. Pub-
lished as SIGPLAN Notices, 21, 11 (1986) 214-223.

36 CHAMBERS, UNGAR, CHANG, AND HÖLZLE

13. Madsen, O. L., and Møller-Pedersen, B. Virtual Classes: A Powerful Mecha-
nism in Object-Oriented Programming. In OOPSLA ’89 Conference Proceed-
ings. Published as SIGPLAN Notices, 24, 10 (1989) 397-406.

14. Meyer, B. Genericity versus Inheritance. In OOPSLA ’86 Conference Pro-
ceedings. Published as SIGPLAN Notices, 21, 11 (1986) 391-405.

15. Meyer, B. Eiffel: An Introduction, Version 2.1. TR-EI-3/GI, Interactive Soft-
ware Engineering, Inc., Goleta, CA (1988).

16. Moon, D. A. Object-Oriented Programming with Flavors. In OOPSLA ’86
Conference Proceedings. Published as SIGPLAN Notices, 21, 11 (1986) 1-16.

17. Schaffert, C., Cooper, T., and Wilpolt, C. Trellis Object-Based Environment:
Language Reference Manual, Version 1.1. DEC-TR-372, Digital Equipment
Corp., Hudson, MA (1985).

18. Schaffert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. An Introduc-
tion to Trellis/Owl. In OOPSLA ’86 Conference Proceedings. Published as
SIGPLAN Notices, 21, 11 (1986) 9-16.

19. Smith, R. B. Objects without inheritance. Personal communication (1990).
20. Snyder, A. CommonObjects: An Overview. STL-86-13, Hewlett-Packard

Laboratories, Palo Alto, CA (1986).
21. Snyder, A. Encapsulation and Inheritance in Object-Oriented Programming

Languages. In OOPSLA ’86 Conference Proceedings. Published as SIGPLAN
Notices, 21, 11 (1986) 17-29.

22. Stein, L. A. Delegation Is Inheritance. In OOPSLA ’87 Conference Proceed-
ings. Published as SIGPLAN Notices, 22, 12 (1987) 138-146.

23. Stroustrup, B. The C++ Programming Language. Addison-Wesley, Reading,
MA (1986).

24. Stroustrup, B. The Evolution of C++: 1985 to 1987. In USENIX C++ Work-
shop Proceedings (1987) 1-21.

25. Ungar, D., and Smith, R. B. SELF: The Power of Simplicity. In OOPSLA ’87
Conference Proceedings. Published as SIGPLAN Notices, 22, 12 (1987) 227-
241. Also to be published in Lisp and Symbolic Computation, 4, 3 (1991).

26. Wegner, P. Dimensions of Object-Based Language Design. In OOPSLA ’87
Conference Proceedings. Published as SIGPLAN Notices, 22, 12 (1987) 168-
182.

