
Abstract
Manipulating programs is hard, while manipulating
objects in the physical world is often easy. Several
attributes of the physical world help make it compre-
hensible and manipulable: concreteness, uniformity,
and flexibility. The Self programming system
attempts to apply these attributes to the world within
the computer. The semantics of the language, the
efficiency and fidelity of its implementation, and the
architecture of its user interface conspire to make the
experience of constructing programs in Self immedi-
ate and tangible. We describe the mechanisms used
to achieve this goal, and illustrate those mechanisms
within the context of an extended programming task.

I. Introduction

There is a satisfying directness in working
with physical objects. You can pick things up,
inspect, poke and prod them, or stick them together.
Everywhere you go, it’s pretty much the same thing
— more physical objects. Move them out of the way,
walk around them, poke them some more. It’s all
very straightforward, and in fact it makes program-

ming systems seem pretty awkward and abstruse by
comparison.

Of course it would be a difficult and dubious
effort to literally replicate the physical world in the
computer. But embodying key elements of our physi-
cal reality might bring benefits to the computing
experience. The rise of object-oriented programming
may be viewed as the outcome of an effort to allow
computers to more directly model physical systems.
However, even object-oriented programming sys-
tems don’t really give you anything like that real-
world sense of obvious straightforwardness, that
sense of immediacy. We believe something more can
be found by reexamining the essence of physical sys-
tems.

Three important characteristics of physical
reality that are not truly present in most program-
ming systems, even object-oriented ones, are con-
creteness, uniformity, and flexibility. In the Self
system, we have tried to marry the cognitive advan-
tages of objects with these three fundamental charac-
teristics, thereby making programming less
awkward, less abstruse. We hope that by so doing,
not only will the expert become more productive, but

The Self-4.0 User Interface:
Manifesting a System-wide Vision of

Concreteness, Uniformity, and Flexibility

Randall B. Smith, John Maloney†, and David Ungar
Sun Microsystems Laboratories

2550 Casey Ave. MTV29-116

Mountain View, CA 94043

randall.smith@sun.com, j.maloney@applelink.apple.com, david.ungar@sun.com

† Current address:
Advanced Technology Group
Apple Computer, Inc.
Cupertino, CA 95014

the novice will have an easier time scaling the learn-
ing slope.

We will describe specifically how aspects of
the language, the user interface, and the implementa-
tion together move the system forward along these
three dimensions of concreteness, uniformity, and
flexibility. The Self-4.0 user interface (along with the
elements of the programming environment it con-
tains) is a part of the system that has not been
described elsewhere, and will be our primary focus.
But the language semantics and the implementation
are equal partners, sharing the common design cen-
ter.

Our exposition will visit each of the three
elements in the Self mantra: concreteness, unifor-
mity, and flexibility. Concreteness: The language is
based on an object model that encourages a direct,
copy-and-modify style of programming. The user
interface independently adds concreteness by sup-
porting immediate, direct access to any part of any
application, including the environment, even while it
is running. Uniformity: The language merges state
and behavior, abolishes the class/non-class distinc-
tion, and uses object and message for everything.
The user interface further increases the system’s uni-
formity by using graphical objects down to the low-
est levels, and by removing the distinction between
run and edit. Flexibility: Combining concreteness
and uniformity alone is a great aid to flexibility. The
Self object manipulation facilities provided by the
user interface, and the interface’s reification of a cen-
tral language level concept, the “slot,” makes key
language level manipulations readily available.

The implementation is an important enabler:
by being faithful to the language semantics and by
generating highly optimized code, the penalties one
would expect to pay for semantic purity are greatly
diminished. The programmer more often gets to
think about his Self world of objects without con-
cerns for implementation details, so will be less
inclined to open “trap doors” into a more efficient
language or to distort his programming style to gain
efficiency.

The result is a system with a particular over-
all feel — offering liveliness, more immediate feed-
back, an almost tactile awareness of objects — a

sense of the tangible reminiscent of the physical
world.

II. Concreteness

Concreteness was one of the original motiva-
tions in the Self language design. A concrete object is
easy to comprehend: it can be manipulated and
directly inspected. The language’s contribution to the
sense of concreteness arises largely from its use of
prototypes: the routine way to make new objects in
Self is to copy and extend an existing object. One can
see an example of what he will be working with,
examine and even test it. In class-based systems, one
instantiates from a description, and thus deals on a
less concrete level.

The Self-4.0 user interface helps create a
sense of concreteness and directness by making a
Self window act like a world of tangible objects. It
achieves this effect with four important characteris-
tics: physical look and feel, unique Self level repre-
sentation, reification of layout constraints, and
composition through embedding. These characteris-
tics arise from the default behavior of the basic
graphical object, called a “morph.” All display
objects (circles, frames, buttons, pieces of text, and
so on) inherit morph behavior, and are therefore
kinds of morphs, acquiring concrete behavior by
default. Also, any Self object can be viewed as a kind
of morph called an “outliner,” so the task of modify-
ing or making new Self objects takes place in this
concrete world. The four characteristics will be
described one by one.

1] Physical look and feel

The physical look and feel arises from the
way the user interacts with a morph. The Self inter-
face is designed for a three button mouse. The left
button is used to grab and carry objects across the
screen. The grabbed object moves not as an outline
of itself, but as a solid body, casting a drop shadow as
though the user had lifted the object above the two
dimensional world below. Because the Self user
tends to work with many small morphs rather than a
few large ones, the solid motion with drop shadow is

an important part of making the system feel like a
world of tangible objects.

The right mouse button is used to pop-up a
“meta menu,” which is the same for all objects. The
meta menu has items like “dismiss,” “change color,”
“resize,” and “grab.” The grab item is useful for but-
tons and slider morphs, which override the default
left button grab behavior in order to act like conven-
tional user interface elements. The middle button is
used by each object to pop-up a menu specialized to
its own usage. A text editor, for example, might have
cut, copy, and paste items on its middle button menu.

The use of pop-up menus might be called
“action on contact.” Action on contact furthers the
sense of direct, concrete feel. One well-known alter-
native to pop-up menus is the “selected object” para-
digm, in which an object is first selected and then
acted upon by graphically disjoint tools. (Consider
most graphics editors or text editors for example, in
which selected text or object can have various opera-
tions performed on it through pull down menus or
palettes of tools.) While the selected object paradigm
has its advantages (it’s good for single button mice,
and presents a more visually manifest interface) it is
fundamentally based on action at a distance. We

chose the more physical action on contact approach
to enhance the sense of concreteness. In another
common alternative, the cursor becomes a tool for
direct interaction. (For example, the cursor might
become a paint bucket for doing object color fills in a
graphics editor.) This is more direct than the selected
object approach, but it still requires that the user slide
the mouse over to a palette to change cursor modes.
We believe the action on contact paradigm is both
direct and quick, since the user specifies the object of
action and invokes the menu in a single gesture: there
is no need to acquire a distant target with the mouse.
Action on contact is not achieved everywhere in the
Self user interface (any use of a graphically disjoint
tool violates the paradigm) but it is an important
guiding principle that supports a sense of direct
action.

 To illustrate these points, we introduce what
will become a running example throughout the paper.
A Self-4.0 user (who might be a professional pro-
grammer, or a somewhat sophisticated and motivated
end user) wishes to change and extend an ideal gas
simulation. The simulation appears as a simple rect-
angular container (a “gas tank”) in which atoms, rep-
resented as disks, are bouncing around. (See Figure

Figure 1. In a Self window, the user pops up the meta menu on the ideal gas simulation (a).
Selecting “outliner” gives the Self-level representation to the user, which can be carried and
placed as needed. (The italic items at the bottom of the outliner represent slot categories that
may be expanded to view the slots. Unlike slots, categories have no language level semantics
and are essentially a user interface convenience.)

(a) (b)

1). The user can go directly to the gas tank object as
it is running, and pop-up the meta-menu to select
“outliner,” which creates a Self object inspector, a
language level representation of the gas tank.

In an outliner, we see the named slots that
make up a Self object. In Self, everything is an
object, and an object consists of named slots. Once
the outliner is on the screen, the user can move it to a
convenient location by grabbing with the left mouse
button. The outliner allows the user to edit, add,
copy, move, and remove slots by direct manipulation.
The user can also open up a textual “evaluator” area
on the outliner in which to type Self expressions,
messages to be sent to the Self object. Thus, the out-
liner supports the language by providing ready, direct
access to Self objects.

2] Single, unique Self-level representation.

The outliner is similar in some ways to the
Smalltalk inspector, but one key difference helps cre-
ate the sense of direct, concrete experience: only a
single, unique outliner can be created per Self object.
If the user pops up the meta-menu to ask for the out-
liner when the outliner is already in the world, the
existing outliner slides into position near the user’s
cursor. The use of animation rather than discontinu-
ous jump supports the sense of concreteness, and
provides extra information (where was the outliner

being used?). The use of a single outliner per Self
object supports the illusion that the outliner actually
is the Self object: multiple representations of the
same Self object would break down that illusion [4].
This restriction also helps decrease the screen clutter
that many Smalltalk programmers are familiar with,
in which several inspectors on the same object can
become scattered or buried. Also, Smalltalk browsers
and inspectors can become out of date giving obso-
lete and inconsistent views of data, whereas an out-
liner uses a background process to keep its display up
to date. This furthers the sense of identification of the
outliner with the Self object.

The outliner can be used to create a button
that will send a message to activate a particular slot.
For example, the user who is browsing the outliner
for the ideal gas tank might notice a slot named “add-
AnAtom.” He can select “Create button” from a mid-
dle button pop-up menu on this slot. This creates a
button bearing the label of the slot: “addAnAtom.”
Clicking (left mouse button) on this button sends the
message “addAnAtom” to the gas tank, making a
new atom appear inside it. The slot-button correspon-
dence takes advantage of the close match between
the user interface level action (pressing a button on
some display object) and the fundamental language
level action (sending a message to trigger a slot in
some Self object.)

Figure 2. The middle mouse button pop-up menu on the “stop” slot (a) enables the user to
create a button for immediate use in the user interface (b). This button will be embedded
in a row morph, so that it lines up horizontally.

(a) (b)

3] Layout constraints are reified as morphs.

The user would like to make this and other
buttons part of the new interface to the ideal gas sim-
ulation, somehow aligning them into a row. He can
do this by creating a “row morph” from a system pal-
ette. (A system palette can be created from a middle
button pop-up on the background.) The user carries a
button over to the row morph, drops the button on
top of the row, and selects “embed in morph below”
from the button’s meta menu. The button then snaps
into place on the row morph. The user repeats this
operation for each of several buttons to create his
row of buttons. (See Figure 2).

Because the row morph acts to hold the but-
tons horizontally aligned, we say that the row morph
“reifies” this layout constraint. Layout reification
contributes to concreteness and has immediate bene-
fits: because the row is itself a kind of morph, it can
be manipulated and accessed like any other morph.
The row morph gives a single place to go to find out
why the layout happens, or to change the way the
layout constraint is maintained. For example, the
user can get the row’s outliner and use its evaluator
to send the row the message “topJustify,” causing the
row to layout its submorphs with their tops aligned.
The more ambitious user can program the row to lay-
out its submorphs in some specialized way.

4] Compound graphical structure arises
through “embedding” rather than “group-
ing.”

The user interface architecture also supports
concreteness by allowing every morph to be
embeddable, or to have any other morph embedded
in it. Embedding buttons in a row is just one exam-
ple. We call an embedded morph a “submorph” of its
host. Complex morph-submorph hierarchical struc-
tures can be built up by embedding (outliners are at
points 13 morphs deep). At this point in the ideal gas
simulation, for example, the user might embed the
row of buttons and the gas tank into a framed column
morph. The column frame morph enforces the con-
straint that its submorphs line up one above the next.
The resulting structure is illustrated in Figure 3.

An alternative to the physical embedding
mechanism is the grouping metaphor as used in
many structured graphics editors. Groups are nor-
mally invisible associations among objects, and
therefore are less concrete than the first class graphi-
cal objects they contain. Embedding is based on a
physical world attachment metaphor and lends a very
tangible feel to working with morphs.

Summary

The sense of direct operation on tangible objects cre-
ated by the four user interface aspects (physical look

Figure 3. Composite graphical effects are achieved by embedding: any kind of morph can be
embedded in any other kind of morph. The ideal gas simulation at left is a compound morph whose
embedding relationships are shown at right.

...

Figure 4. The user wishes to remove the label from the surface of a button. In this series of operations,
the user starts by pointing to the label, selects “submorphs” from the meta menu, and selects the label
from the resulting menu list. A menu of options is presented, from which the user selects “yank it out”.
The button, which shrinks tightly around its submorphs, shrinks down to a minimum size when it has no
submorphs.

and feel, single Self level representation, reification
of layout, and embedding rather than grouping) adds
to the sense of concreteness created by the language
semantics. The language, being based on prototypes,
creates an intellectual sense of concreteness by let-
ting the programmer work with real data structures
rather than descriptions, whereas the user interface is
closer to motor-sensory perception. But each kind of
concreteness reinforces the other because the goal is
the same: to create a programming experience that is
more understandable and more directly to the point.

III. Uniformity

Uniformity in a system enables a few con-
cepts to be used to understand everything. For exam-
ple, uniformity is a startling feature of the physics of
the everyday world: all we see about us is con-

structed out of a few kinds of elementary particles,
and everywhere we look the same basic laws of inter-
action are at play, from the subatomic to the galactic.
The Self language strives for a similar kind of relent-
less uniformity: everything is an object composed of
named slots, and all computation is performed by
message passing between objects.

The user interface takes a similar approach
in its fundamental architecture. We will discuss two
kinds of uniformity in the user interface architecture:
1] Morphs all the way down. The user can directly
take apart an application down to a very low level.
Even the programming environment itself can be
modified and deconstructed for use in applications.
2] “Run” and “edit” are unified. There is no system-
level distinction between using an application and
changing or programming it. Enabling immediate
and direct access to pieces of a running application
can save time and enhance the sense of direct effect.

1] Morphs all the way down

The user modifying the ideal gas simulation
might want to replace the textual label “addAnAtom”
appearing on one of the buttons with a picture of an
atom. He can extract the label from the submorph
structure in a series of interactions depicted in Figure
4.

The user can also “yank out” an atom from
the gas tank (as a practical matter he may be want to
stop the atomic motion to avoid having to select a
moving target), resize the atom to the desired dimen-
sion, and drop it onto the button. Dropping alone
does not cause embedding: the user selects “embed
in morph below” from the atom’s meta menu. Again
there is a selection ambiguity — embed in which
morph below? — and the user must select from a
menu of morphs at that point in the world. Selecting
the button morph from the list embeds an actual atom
onto the button.

Environment available for use or modification:
An important consequence of uniformity is that the
entire environment, being built out of morphs, is
available for direct deconstruction or modification. A
Self menu, for example, is a kind of column frame
with buttons as submorphs. Self menus have a “pin
down” bar at the top which enables them to be made
persistent. The user pops up the menu for the gas
tank, “pins down” this menu, and “yanks out” the
resize button. (See Figure 5). The user can then
directly embed the resize button into the simulation.
Now the simulation user will be able to explore the
effects of isothermal volume changes on pressure. In
a few gestures, the user has taken an element from
the environment for use in the application.

The user can, of course, extend the environ-
ment itself in the same very direct way: one might
make a new kind of button and embed it in the proto-
typical systems meta menu, for example. All subse-
quent meta menu invocations, which copy this menu,
will include the new button. As in the physical world,

(a) (b)

(c)

Figure 5. The environment itself is available for reuse. Here the user has created the menu of operations
for the gas tank. He has “pinned down” this menu, by pressing a button at the top of the menu (The “pin
down” button disappears when pressed.) The user can then take the menu apart into constituent buttons:
here he gets the resize button which he then incorporates into the simulation.

tools are themselves elements of the everyday world,
and can be modified using the same mechanisms
used to modify other objects.

2] Run and edit unified

There is another kind of uniformity exhibited
here: the lack of a run/edit distinction [17]. Most user
interface builders have a “build” or “edit mode” that
is distinct from the actual application usage mode.
(SUIT is a notable exception here [13].) Most inter-
face builders create a description for an application
(i.e.: a C program whose execution creates the inter-
face.) There is a deep run/edit switch in the design of
such systems, unavoidable in many cases because the
underlying system does not support incremental pro-
gramming changes. But even systems based on
Smalltalk or Lisp environments typically do not
allow direct, immediate editing of the things on the
screen. If you see a menu pop-up as part of an appli-
cation, we believe there should always be a direct,
immediate way to change it. Again, we take inspira-
tion from the underlying laws of the everyday world.
Physics does not have distinct run and edit modes, it
just keeps right on going. As we have seen through
the ideal gas example, there was no fundamental
need to stop the animated atoms from bouncing
around during construction. This can save time,
enhance the sense of direct effect, and it provides
immediate feedback.

The run/edit unification is also useful in sup-
porting the multi-user capability of Self-4.0. Any
Self window can be shared with any other X window
server on the network. Users each get their own cur-
sor and see exactly the same thing, and any object
can be manipulated by any user. If one of the users
unilaterally decides to start making changes, an envi-
ronment-wide, or even a per-application run/edit
mode could interfere with the other users.

Issues and Limitations

Of course, just as one may want to pull the
plug before fixing a toaster, there are certainly times
when the user may want to shut down some part or
all of an application before modifying it. For exam-

ple, if one wanted to rewrite the display methods for
the atoms in the gas tank, it would be wise to open a
new world in which to edit the code, thereby becom-
ing immune from errors that could crash a window’s
redisplay efforts. Self does its best to make such rude
events friendly - a debugger will appear in a separate
window anytime a world stops running, but this is an
awkwardness worth avoiding.

Using “morphs all the way down” has bene-
fits, but the most fluid reassembly of parts is
achieved if the programmer observes a certain design
discipline. In particular, morphs need to be built
without assuming anything in particular about
embedding relationships. For example, a text editor
morph might assume there is a scroll bar embedded
as the first element in its list of submorphs. Code
written under that assumption will not work if the
scroll bar is “yanked out.” Consequently, morph A,
needing to refer to morph B, should maintain a lan-
guage level slot that holds a reference to morph B.
Morphs that are designed within this discipline can
keep running even when disassembled.

Summary

Uniformity brings a cognitive economy to
operating in the interface: the same mechanisms
manipulate and change objects at many levels. Uni-
formity means that the tools of the environment are
like everyday objects, immediately available for use
or modification. Finally, uniformity means a lack of
distinction between run and edit, which can save time
and enhance the sense of immediacy.

IV. Flexibility

In our vision of the ideal system, the pro-
grammer could quickly try changes to any aspect of
any part of the system. Anything that makes change
easier boosts flexibility. In Self-4.0, the morph serves
down to a quite low level of graphics detail, and a
kind of flexibility emerges: everything the user per-
ceives as a graphical entity is likely to be manipula-
ble as a concrete object. Almost anything can be
taken apart and modified, whether it be applications
or parts of the environment itself. Uniformity helps

flexibility.
Concreteness also aids in flexibility by mak-

ing it easy to make a change. The user wishing to
change an element of the user interface begins by
pointing to it and invoking the meta menu.

However, only so much can be done by
direct manipulation. Deeper changes require that the
user reach into the programming language underly-
ing the user interface.

Language level support for flexibility

The uniformity of a language can help flexi-
bility by enabling one way of making changes to
apply throughout the system. Uniformity also helps
flexibility by allowing the user to combine arbitrary
elements from originally distinct domains. For exam-
ple, a C++ programmer, having built a self-sorting
array of objects, is unable to use it immediately for
sorting numbers, since numbers are not objects. The
flexibility of changing the system to have self-sorting
arrays of numbers is impeded because there are two
kinds of data. Smalltalk programmers, for whom a
number is a first class object, can freely use their
sorted collections on numbers or on any other sort-
able object.

Any language featuring “everything is an
object,” such as Smalltalk or Self, enjoys this kind of
uniformity-generated flexibility. But the Self lan-
guage provides even more flexibility by two further
unifications: 1] use of message-activated slots for
both state and behavior, and 2] the lack of a class/
non-class distinction. We illustrate both unifications,
showing how direct interaction provided by the user
interface and programming environment makes such
changes easy.

Message-activated slots for both state and
behavior.

Self objects use a single construct, the slot,
to hold both state and behavior. To be more specific,
if a object receives a message and the object holds or
inherits a slot matching the message name, then (if
the slot contains a non-method object) the object in
the slot will be returned as the result of the message
send. If the slot contains a method object, the code in
the method will be executed, and the result of the
execution returned. This uniform usage of slots to
hold data and methods makes it very easy to change
from using a stored value to a computed value, as no
code in the system, even code in slots of the same

Figure 6. The user has selected one atom on which to experiment. The user changes the “raw-
Color” slot from a computed to a stored value by editing directly in the atom’s outliner.

object, can tell if its messages trigger computed or
stored results.

To illustrate the environment’s support for
this kind of change, suppose our user wishes to use
color to reveal the energy level of each atom. The
idea is to change the atom’s color from a stored quan-
tity to a computed one that depends on energy. The
user takes a bottom-up approach, planning to test his
ideas on an individual atom. By pointing to an atom
in the gas tank and selecting the “submorphs” item
on the meta menu, the user can summon the atom’s
outliner.

In the atom’s outliner, the user finds a slot
(called rawColor) that holds the color of the atom. By
selecting “edit” from this slot, the user can change
the slot contents from a stored to a computed value.
The user puts in some code to return a red color with
high energy or gray color with low energy (see Fig-
ure 6). (The user must of course understand Self syn-
tax and how the color system works, details of which
are off point here.)

There is now one atom running about whose
display method uses a computed color, while for the
other atoms, which are executing the very same dis-
play method, color is simply stored. The direct access
to an outliner for an atom made it quick and easy to
install this change.

Figure 7. The user copies the
modified rawColor slot as a first
step in getting the computed
method of coloring more widely
shared. Because slots can be
moved about readily, restructur-
ing changes are relatively light
weight, enhancing the sense of
flexibility.

No “class/non-class” distinction

Self is a “prototype” based system, and any
object can have inheritance children, or can itself
inherit from any other object. (For a fuller discussion
of the utility of this flexibility, see the original Self
paper [18].) In prototype based languages, an object
can hold its own behavior, it need not be held on its
behalf by some class. The programmer has more
places to put behavior, thus more flexibility. In Self,
inheriting from an object gives you access to that
object’s slots. This simple object model enables the
Self environment to use a single object representa-
tion mechanism, the outliner, to present all the state
and behavior available to an object through itself and
its parents.

 To illustrate how the outliner is used in deal-
ing with inheritance, suppose our user wishes to
make all the atoms have this kind of energy-based
self-coloring behavior. The first step is to make the
color calculation more widely available by copying
the slot into the shared inheritance “parent” of all
atoms. The contents of any slot can be accessed by
clicking on the button at the right hand edge of the
slot. The user gets an outliner on the shared parent of
all atoms from the slot named “parent.” From the
middle button menu on the slot named “rawColor,”
the user can select “copy.” This attaches a copy of the

rawColor slot which can be carried and dropped onto
the atom parent, who immediately takes it in as one
of its own (See Figure 7).

However, this is not enough to make all
atoms exhibit this self-coloring behavior, because
there is still a rawColor slot in every atom, overrid-
ing the new slot in their common parent. The user
can remove the rawColor slot from the “prototype”
atom. Again, Self is a prototype based system, and
consequently the standard way to make a new atom
is to copy a broadly available example, or “proto-
type” atom. In Self, prototypes are stored in the slots
of a widely inherited object. The user can get an out-
liner on this object and browse through the slots to
find the one named “atom.”

The user can then delete the rawColor slot
from the prototype, and all new copies of this atom
will be self-coloring. (At this point the gas tank still
contains old, original style atoms with their individ-
ual “rawColor” slots, so the user may want to empty
the gas tank and refill it with the new self-coloring
atoms.) The atoms will continue to bounce around
throughout the process, and freshly introduced atoms
change color in response to being heated or cooled.

To finish the story, user can employ a color
changing tool to unify color of the application’s
morph-submorph collection, move the whole thing to
its own window, or save it to a file. (See Figure 8)

Summary

Concreteness plus uniformity are great aids
to flexibility, and the independent concreteness and

uniformity of the language and the interface give a
flexibility to each. But the language (without a distin-
guished class notion) also helps the environment by
enabling one visual element — the outliner — to be
used for all programming tasks. The environment, by
making slots appear as manipulable concrete entities,
makes it easy for the programmer to reorganize
things through drag-and-drop, direct-contact based
mechanisms. The language works together with the
programmer’s interface to make a flexible system.

V. The Role of the Implementation

Throughout this discussion, there has been a
hidden player whose presence is a necessary part of
helping realize the goals of concreteness, uniformity,
and flexibility. Previous papers have detailed how the
design of Self, so extreme in its insistence on using
object and message for everything, renders a conven-
tional implementation unusable [19]. The Self virtual
machine uses dynamic compilation based on statisti-
cal assessment of actual method usage to generate
optimized code while the system runs. This optimiza-
tion technique inlines many of the calls which would
normally be dynamically dispatched. The gas tank
simulation for example, takes a few minutes to
“warm up” as the system optimizes the code. In the
optimized version of the method that calculates how
to bounce an atom off the inside of the gas tank wall,
the top 44 Self-level stack frames have been inlined
into 4 actual frames. Studies of the Self virtual
machine have shown that, on the average, there are

Figure 8. The completed application. The user
has invoked a color changing tool that unifies
colors across most submorphs, and has invoked
the meta menu item “move to own window.”

about ten apparent message sends for every one that
really happens[9].

Proper support for debugging is an important
part of making the programming process fluid and
efficient. The Self debugger takes advantage of the
virtual machine’s technique of “dynamic deoptimiza-
tion”[8] to present even highly optimized code in
Self-level terms. The user can see Self level stack
frames, fix any errors in the Self code, and continue.

We believe this implementation lets one
work in the style that is naturally called for by the
language.

VI. Related work
The Self system draws on previous work in

two areas: user interface construction and object-ori-
ented programming languages. It is most closely
related to systems that combine both.

User interface builders allow graphical user
interfaces to be constructed by direct manipulation.
Early work in this area includes Trillium [7], a direct-
manipulation editor for photocopier interfaces,
Cardelli’s dialog editor [3], and the NeXT UI builder
[21]. Most UI builders allow the interface to be tested
by changing from edit-mode to run-mode; however,
even in run-mode, the interface is typically not con-
nected to its underlying application program. To test
the UI in the context of the application, the user must
recompile or relink and, after testing, must return to
the UI builder to make further changes.

The SUIT user interface builder [13] nar-
rows the gap between editing and testing. SUIT uses
a special key combination to distinguish editing ges-
tures from normal user interactions. Holding down
the SUIT key could be considered a run/edit mode
switch, but it is so lightweight and temporary that it
does not detract from the sense of liveness and
immediacy. However, SUIT does not have an inte-
grated programming environment; the application
program itself cannot be changed at run-time.

A number of commercial product such as
Hypercard [10], MacroMedia Director [5], and Visu-
alBasic[20] combine a UI builder (perhaps for a spe-
cific domain) with a scripting language. User
interfaces constructed with these systems can always
be edited, and behavior can be added from within the

system using the scripting language. However, the
scripting languages of these systems have less uni-
form semantics than Self, and no attempt is made to
manifest language elements as concrete, manipulable
objects. Furthermore, the scripting languages cannot
be used to define user interface widgets nor to extend
the system in other ways.

A system called Reno [11], developed inde-
pendently and concurrently with the Self user inter-
face, has much of the feel we describe here. Display
objects are very fine grained, and can be directly
accessed at any time. For example, the user can
directly embed any graphic into a line of text. Reno
is written in Smalltalk, but it is less about an integra-
tion of that language with the interface, and more
about providing a set of tools for flexible and direct
interface manipulation. Reno differs from the Self
interface in its interaction details, and in a display
metaphor that is based on window objects viewing
the contents of container objects.

In the language area, Self is a direct descen-
dant of Smalltalk-80 [6]. Smalltalk achieved some of
the goals of Self: the Smalltalk language is extremely
uniform in its treatment of objects, its environment
allows programs to be changed at any time, and its
implementations are fast enough to allow both the
application and the user interface framework to be
written entirely in Smalltalk. However, the distinc-
tion between variable accessing and message sending
reduces Smalltalk’s language flexibility. Further-
more, Smalltalk’s classes are inherently one level
abstracted from the objects they describe. The Small-
talk interface, though live, does not provide the kind
of concreteness through direct and immediate decon-
struction and modification of environment and appli-
cation that we describe in this paper.

A number of other prototype languages have
been developed in recent years including Kevo,
Glyphic Script, Omega, and NewtonScript (for over-
views, see [16] and [1]). All of these languages have
programming environments that allow objects to be
inspected and edited graphically. Glyphic Script and
NewtonScript also have UI construction facilities.
The Newton Toolkit UI builder is similar to other UI
builders: the interface is not connected to the applica-
tion during construction, and a running application

cannot be edited.
Glyphic Codeworks takes an interesting

approach: constructing a user interface object builds
an underlying GlyphicScript object. The fundamental
language elements objects and slots are reified and
can be manipulated directly. Unfortunately, for lack
of a high-performance implementation, most of the
Glyphic Codeworks user interface framework,
including its user interface components, is imple-
mented in C; these parts of the system cannot be
taken apart and modified at run-time.

Garnet [12] and ThingLab [2] are prototype-
based user interface construction environments.
However, rather than making the underlying pro-
gramming language more concrete, both systems
attempt to hide or at least decrease its importance by
using constraints to define user interface behavior.
Like Self, Garnet user-interfaces are composed of
fine-grained graphical objects like rectangles and cir-
cles but, unlike Self, Garnet groups these objects
using abstract objects (aggregates) that are not
directly visible.

The desktop metaphor [14] made files and
directories more approachable by making them into
tangible, manipulable objects. The Self system
attempts to do the same for an object-oriented pro-
gramming language. The look and feel of the Self
system was heavily influenced by the Alternate Real-
ity Kit (ARK) [15], an earlier system by one of the
authors and Seity [4], an earlier user interface for the
Self language.

VII. Conclusions
Over the years the Self project has been

motivated by a vision of what computing should be.
It draws on key properties of the physical world to
create a computing system that is more malleable and
more readily comprehensible. The key properties,
borrowed from the physics of the everyday world,
are concreteness, uniformity, and flexibility. Each is
present in different ways in the language semantics
and the user interface architecture. None would be
possible were it not for the dynamically optimizing
implementation.

Concreteness is in the language semantics
because Self is a prototype-based system: a user

works directly on objects, copying them to make new
ones. Concreteness is in the user interface architec-
ture in four ways: a physical look and feel, a single
Self level representation, the reification of layout
constraints, and the use of embedding for composite
structure.

Uniformity is in the language semantics
because everything is an object, because all computa-
tion happens by message passing, and because slots
are used to hold both state and behavior. Uniformity
is in the user interface architecture because a single
kind of display object, used to a very low level, can
be directly accessed, and because there is no run/edit
distinction. The environment itself is made of mor-
phs, and is therefore available for reuse and modifi-
cation.

Flexibility in language and interface arises
largely from their uniformity and concreteness prop-
erties. The user interface helps the language express
its flexibility by reifying objects and slots, making
them manipulable as concrete entities.

The user interface architecture, the language
semantics, and even the implementation all work to
create a single wholistic experience motivated by a
desire to make programming more like manipulation
of tangible objects. More than anything else, one
mantra distinguishes this approach from others: con-
creteness, uniformity, and flexibility. Every aspect of
Self—language, implementation, user interface—has
been designed to meet what we mean by these three
criteria. This coherence of design allows the whole to
be more than the sum of its parts.

Acknowledgments

Much credit is due Lars Bak who implemented the
outliner, and realized the power of the reified slot.
Thanks to Mario Wolczko for the calculation of stack
frames in the ideal gas simulation. And thanks to Ole
Lehrmann Madsen, Mario Wolczko, and Bay-Wei
Chang for helpful comments on the paper.

References
[1] G. Blaschek. Object-Oriented Programming
with Prototypes, Springer-Verlag, New York, Berlin
1994.

[2] A. Borning and R. Duisberg. Constraint-Based
Tools for Building User Interfaces, ACM Transac-
tions on Graphics 5(4) pp. 345-374 (October 1981).

[3] L. Cardelli. Building User Interfaces by Direct
Manipulation, in Proc. ACM Symposium on User
Interface Software (UIST '88), pp. 152-166 (October
1988).

[4] B. Chang, D. Ungar, and R. Smith. Getting Close
to Objects, in M. Burnett, A. Goldberg, and T. Lewis,
editors, Visual Object-Oriented Programming,
Concepts and Environments, pp. 185-198, Man-
ning Publications, Greenwich, CT, 1995.

[5] Director, MacroMedia Corp., San Francisco, CA

[6] A. Goldberg and D. Robson. Smalltalk-80, the
Language and its Implementation, Addison Wes-
ley, 1983.

[7] D. Henderson. The Trillium User Interface
Design Environment, Proceedings of CHI '86, pp.
221-227 (April 1986).

[8] U. Hölzle, C. Chambers, and D. Ungar. Debug-
ging Optimized Code with Dynamic Deoptimization,
in Proc. ACM SIGPLAN ‘92 Conference on Pro-
gramming Language Design and Implementation,
pp. 32-43, San Francisco, CA (June 1992).

[9] U. Hölzle and D. Ungar. A Third-Generation Self
Implementation: Reconciling Responsiveness with
Performance, in Proc. OOPSLA '92, pp. 229-243.
Also see U. Hölzle, Adaptive Optimization for Self:
Reconciling High Performance with Exploratory
Programming, Ph.D. Thesis, Stanford University
(August 1994).

[10] HyperCard, Apple Computer Inc., Cupertino,
CA.

[11] R. Kerr, M. Markley, M. Sonntag, T. Trower.
Reno: A Component-Based User Interface, in Proc.
CHI ‘95 Conference Companion, pp 19-20 Denver,
(May 1995).

[12] B. Myers, D. Giuse, and B. Vander Zanden.
Declarative Programming in a Prototype-Instance
System: Object-Oriented Programming without Writ-
ing Methods, in Proc. OOPSLA '92, pp. 184-200
(October 1992)

[13] R. Pausch, N. Young, R. DeLine. Simple User
Interface Toolkit (SUIT): The Pascal of User Inter-
face Toolkits, in Proc. Symposium on User Interface
Software and Technology (UIST '91), pp. 117-125
(November 1991).

[14] D. Smith, C. Irby, R. Kimball, B. Verplank, and
E. Harslem. Designing the Star user interface, BYTE
7, 4, pp. 242-282 (April 1982).

[15] R. Smith. Experiences with the Alternate Reality
Kit, an Example of the Tension Between Literalism
and Magic, in Proc. CHI + GI Conference, pp 61-67
Toronto, (April 1987).

[16] R. Smith, M. Lenctczner, W. Smith, A. Taival-
saari, and D. Ungar. Prototype-Based Languages:
Object Lessons from Class-Free Programming
(Panel), in Proc. OOPSLA '94, pp. 102-112 (October
1994). Also see the panel summary of the same title,
in Addendum to the Proceedings of OOPSLA ‘94,
pp. 48-53.

[17] R. Smith, D. Ungar, and B. Chang. The Use
Mention Perspective on Programming for the Inter-
face, In Brad A. Myers, Languages for Developing
User Interfaces, Jones and Bartlett, Boston, MA,
1992. pp. 79-89.

[18] D. Ungar and R. Smith. Self: the Power of Sim-
plicity, in Proc. OOPSLA ‘87, pp. 227-241 (October
1987).

[19] D. Ungar, R. Smith, C. Chambers, and U. Höl-
zle. Object, Message, and Performance: How They
Coexist in Self. Computer, 25(10), pp. 53-64. (Octo-
ber 1992).

[20] VisualBasic, MicroSoft Corp., Redmond, WA

[21] B. Webster. The NeXT Book, Addison-Wesley,
Reading, MA, 1989.

